File: H:/coursesF18/610/610F18Hmwk5.doc RWN 10/09/18

610 Fall 2018 - Homework 5 Due Th 10/18/18

1. (50 points, companion matrix design)

Consider the scalar lossless PR admittance

$$
y(s)=\left[3 s\left(s^{2}+4\right)\right] /\left[\left(s^{2}+1\right)\left(s^{2}+9\right)\right]
$$

a) Explain why this is PR and lossless.
b) Give a state-variable realization in companion matrix form and from it find a (5-port) constant admittance coupling matrix Yc which when loaded in four capacitors gives $y(s)$ at the remaining port.
c) Discuss passivity of any circuit realizing Yc.
2. (40 points, PR \& BR)

For the following functions state which are PR and/or BR and where there is a parameter a , for which values of a the function is PR and/or BR .
a) $\mathrm{f} 1(\mathrm{~s})=\left[\mathrm{s}^{2}+(2-\mathrm{a}) \mathrm{s}+1\right] /\left[\mathrm{s}^{2}+\mathrm{s}+\mathrm{a}\right]$.
b) $\mathrm{f} 2(\mathrm{~s})=\left[\left(\mathrm{s}^{2}+1\right)\left(\mathrm{s}^{2}+4\right)\right] /\left[\mathrm{s}\left(\mathrm{s}^{2}+2\right)\left(\mathrm{s}^{2}+3\right)\right]$
c) $\mathrm{f} 3(\mathrm{~s})=1 / \mathrm{f} 1(\mathrm{~s})$
d) $\mathrm{f} 4(\mathrm{~s})=\left[\mathrm{s}^{2}-\mathrm{as}+4\right] /\left[\mathrm{s}^{2}+\mathrm{as}+4\right]$
3. (10 points, tan and tanh)

The partial fraction expansions for $\tan (\mathrm{s})$ and $\tanh (\mathrm{s})$ are
$\tan (\mathrm{s})=\sum_{(\mathrm{n}=1 \text { to } \infty)\left[8 \mathrm{~s} /\left[(2 \mathrm{n}-1)^{2} \pi^{2}-4 \mathrm{~s}^{2}\right]\right.}$
$\tanh (\mathrm{s})=\sum_{(\mathrm{n}=1 \text { to } \infty)}\left[8 \mathrm{~s} /\left[(2 \mathrm{n}-1)^{2} \pi^{2}+4 \mathrm{~s}^{2}\right]\right.$
a) Discuss why one is positive-real and the other not.
b) The infinite product expansions for \sin and \cos are

$$
\begin{aligned}
& \sin (\pi \mathrm{s})=\pi \mathrm{s} \prod_{(\mathrm{n}=1 \text { to } \infty)}\left(1-(\mathrm{s} / \mathrm{n})^{2}\right) \\
& \cos (\pi \mathrm{s})=\prod_{(\mathrm{n}=1 \text { to } \infty)}\left(1-(2 \mathrm{~s} /\{2 \mathrm{n}-1\})^{2}\right)
\end{aligned}
$$

From these form the infinite product expansion for $\tan (\mathrm{s})=\sin (\mathrm{s}) / \cos (\mathrm{s})$ and infer the infinite product expansion for $\tanh (\mathrm{s})=\sinh (\mathrm{s}) / \cosh (\mathrm{s})$.

