File: H:/coursesF18/610/610F17Hmwk3.doc RWN 09/20/18

1. (50 points, Indefinite admittance \& admittance matrix)

For the above circuit:
a) Using the node numbers and a ground off of the circuit, give the 5×5 indefinite admittance matrix, $Y_{\text {ind }}$.
b) Assume the ground is moved to node 5, find the 2-port admittance matrix $\mathrm{Y}(\mathrm{s})$, having port 1 between nodes $1 \& 5$ and port 2 between nodes $2 \& 5$, by b1) eliminating the internal nodes $3 \& 4$ one at a time (that is, using two different 1 x 1 matrices $\mathrm{Y}_{\text {nodal22 }}$).
b2) eliminating the two internal nodes together (that is, using $\mathrm{Y}_{\text {nodal22 }}$ as a 2×2 matrix once).
[give the results such that all four entries have the same polynomial denominator]
c) Compare the two procedures.
2. (50 points, state variable for continued fraction)
[this problem uses ideas from Chyi Hwang, Tong-Yi Guo and Leang-San
Shieh, "A Canonical State-space Representation for SISO Systems Using Multipoint Jordan CFE," Journal of the Franklin Institute, Vol. 328, No. 2/3, 1991, pp. 207-216.]

For the continued fraction form of the state variable equations Esx $=\mathrm{Ax}+\mathrm{Bu}, \mathrm{y}=\mathrm{Cx}$ [the above paper gives these as $K s z=H z+d u, y=d^{T} z$, so here $K=E, H=A, d=B, z=x$] where [see equations (7) of the above paper]

$$
\begin{aligned}
& \mathrm{E}:=\left(\begin{array}{cc}
\mathrm{k} 1 & 1 \\
1 & -\mathrm{k} 2
\end{array}\right) \\
& \mathrm{A}:=\left(\begin{array}{cc}
-\mathrm{h} 1 & \mathrm{~b} 1 \\
-\mathrm{a} 1 & -\mathrm{h} 2
\end{array}\right) \\
& \mathrm{B}:=\binom{1}{0}
\end{aligned}
$$

a) Show that this form allows the transfer function $T(s)=B^{T}(s E-A)^{-1} B$ to be written as the continued fraction

$$
\mathrm{T}(\mathrm{~s}):=\frac{1}{\mathrm{a} \cdot \mathrm{~s}+\mathrm{b}+\frac{(\mathrm{s}-\mathrm{e})(\mathrm{s}-\mathrm{f})}{\mathrm{c} \cdot \mathrm{~s}+\mathrm{d}}}
$$

Give a, b, c, d, e, f in terms of the entries in E, A, B.
b) Compare with equation (2) of the above paper.
c) Use this to give a state space realization for the continued fraction form of the previous impedance.

$$
z(s)=(2 s+6) /[(s+2)(s+6)]
$$

