File: H:/coursesF18/610/610F17Hmwk2.doc RWN 09/12/18

1. (50 points, circuit equations)

For the above circuit and its graph of the 09/11/18 class notes:
a) Replace the OTA by a gyrator of gyration conductance g and Add another add a current source pointed down as part of branch 2 (so the graph is unchanged).
b) Give the new $\mathrm{Av}=\mathrm{Bi}$ equations and solve for the tree branch voltages versus the two current sources.
c) Give the port admittance and impedance matrices if nodes I and II to ground are the two ports of the 2-port.
2. (50 points, state variable realizations)

For the input impedance

$$
z(s)=(2 s+6) /[(s+2)(s+6)]
$$

a) Using the companion matrix for the denominator $\left(s^{2}+8 s+12\right)$ give a state space realization, that is the state equations $\mathrm{dx} / \mathrm{dt}=\mathrm{sx}=\mathrm{Ax}+\mathrm{Bu}, \mathrm{y}=\mathrm{Cx}+\mathrm{Du}$ with $\mathrm{u}=\mathrm{i}$, $y=v$ so that

$$
\mathrm{z}(\mathrm{~s})=\mathrm{C}\left(\mathrm{~s} 1_{2}-\mathrm{A}\right)^{-1} \mathrm{~B}+\mathrm{D}
$$

b) Repeat by using a product realization with A having (as diagonal submatrices) the companion matrices for $(\mathrm{s}+2)$ and ($\mathrm{s}+6$)
c) Comment upon state space realzation of the admittance $y(s)=1 / z(s)$.

