1. (40 points, KVL, KCL)

For the above graph of the circuit of the 08/30/18 class notes:
a) Instead of the tree shown and used in class use branches 3,4 , and 7 as the tree in that order and the cotree in the order $1,2,5,6$. Give the resulting cut-set and tie-set matrices.
b) Form the product cut-set matrix times the transpose of the tie-set matrix and compare with the results in class.
c) Find the number of trees by giving the incidence matrix $\mathrm{I}_{\mathrm{inc}}$ using nodes I, II, III and form the determinant of $\mathrm{I}_{\mathrm{inc}} \mathrm{I}_{\mathrm{inc}}{ }^{\mathrm{T}}$.
2. (60 points, $\mathrm{Av}=\mathrm{Bi}$, semistate)

Using the graph cut-set and tie-set matrices of the 08/30/18 class and its seven branch circuit shown above, set up the $\mathrm{Av}=\mathrm{Bi}$ description and from that the semistate equations Esx $=A x+B u$ where the semistate column vector is $x=\left[v_{t}{ }^{T}, i_{1}{ }^{T}\right]^{T}$ and $\mathrm{u}=\mathrm{v}_{\mathrm{i}}$ is the single input (also $\mathrm{s}=\mathrm{d} / \mathrm{dt}$ or the Laplace transform variable). If the output y is the single voltage, v_{6}, at the output of the OTA, give the output equation $\mathrm{y}=\mathrm{Cx}$.

