File: f:/courses/fall2018/610/610F18finalexm.doc RWN
Tu 12/18/18
EE 610 Final Exam Fall 2018 Take Home due prior to end of scheduled exam Open Book Open Notes 100 points, 2 hours.
Notebooks are due at the end of the exam. Good luck and have a good semester break.

1. (10 points, 10 minutes)

Give the $2^{\text {nd }}$ Foster circuit for all real constant a and b for which the following input admittance is Lossless PR

$$
y(s)=\left[\left(s^{2}+1\right)\left(s^{2}+a\right)\right] / s\left[\left(s^{2}+2\right)\left(s^{2}+b\right)\right]
$$

2. (10 points, 10 minutes)

Using the $1^{\text {st }}$ Cauer test determine if the following polynomial is Hurwitz, strictly Hurwitz, or neither

$$
P(s)=s^{7}+2 s^{6}+6 s^{5}+9 s^{4}+12 s^{3}+12 s^{2}+8 s+4
$$

3. (25 points, 25 minutes)

A 2-port is described by $\mathrm{v}_{2}=\mathrm{n}_{\mathrm{v}} \cdot \mathrm{v}_{1}$ and $\mathrm{i}_{2}=\mathrm{n}_{\mathrm{i}} \cdot \mathrm{i}_{1}$
where n_{v} and n_{i} are real constants (which can be negative, zero, or positive)
a) Give the $\mathrm{Av}=\mathrm{Bi}$ description and from it the 2-port Y, Z, and S matrices and when they exist give the $n_{v} \& n_{i}$.
b) Give the cases when this 2-port is passive.
c) Load this 2-port in an admittance y_{L} (1-port) and give the corresponding (1-port) input yin. Interpret the results when n_{v} and n_{i} are both positive. [remember that 2 -port polarities have i_{2} entering the $2^{\text {nd }}$ port upper lead]
d) Discuss how you would build this 2-port given that all types of controlled sources are available in VLSI circuits (that is, available are: VCCS=Voltage Controlled Current Sources, CCVS, VCVS, CCCS).
4. (20 points, 20 minutes)

For the above circuit graph
a) Using branches 1 and 2 as a tree, give the cut-set, C_{1}, and tie-set, T_{1}, matrices.
b) Using the same numbering, repeat using branches 3 and 4 as a tree to give cutset, C_{2}, and tie-set, T_{2}, matrices.
c)Find a relationship (=transformation) matrix R such that the cut-set matrices are related by $C_{2}=R \cdot C_{1}$ and give the relation between the tie-set matrices T_{1} and T_{2}.
5. (35 points, 35 minutes)

For the following circuit

a) Set up the semi-state equations, $\mathrm{sEx}=\mathrm{A}(\mathrm{t}) \mathrm{x}+\mathrm{Be} 3, \mathrm{v}_{\mathrm{c} 2}=\mathrm{Cx}$, using graph branches pointing down or to the right and numbered as the components. Choose branches 1 and 2 as the tree, the input as e3 and output as the voltage of node II with respect to ground (which is $\mathrm{v}_{\mathrm{C}}=\mathrm{x}_{2}$). Use x as tree branch voltages followed by link currents.
b) Using the middle 2-port (comprised of the gyrator and C 1) give its 2-port Y and from it give the input admittance, yin(s), seen by the voltage source and the voltage gain, $\mathrm{v}_{\mathrm{C} 2} / \mathrm{e} 3$.
c) Compare the calculations which would be involved between using the two methods to give the voltage gain.

