File: f:/courses/fall2018/610/610F18finalexm.doc RWN Tu 12/18/18 EE 610 Final Exam Fall 2018 Take Home due prior to end of scheduled exam Open Book Open Notes 100 points, 2 hours.

Notebooks are due at the end of the exam. Good luck and have a good semester break.

 (10 points, 10 minutes) Give the 2nd Foster circuit for all real constant a and b for which the following input admittance is Lossless PR

$$y(s) = [(s^2+1)(s^2+a)]/s[(s^2+2)(s^2+b)]$$

(10 points, 10 minutes)
Using the 1st Cauer test determine if the following polynomial is Hurwitz, strictly Hurwitz, or neither

 $P(s)=s^7+2s^6+6s^5+9s^4+12s^3+12s^2+8s+4$

3. (25 points, 25 minutes) A 2-port is described by

 $v_2=n_v \cdot v_1$ and $i_2=n_i \cdot i_1$

- where n_v and n_i are real constants (which can be negative, zero, or positive)
- a) Give the Av=Bi description and from it the 2-port Y, Z, and S matrices and when they exist give the $n_v \& n_i$.
- b) Give the cases when this 2-port is passive.
- c) Load this 2-port in an admittance y_L (1-port) and give the corresponding (1-port) input y_{in} . Interpret the results when n_v and n_i are both positive. [remember that 2-port polarities have i_2 entering the 2nd port upper lead]
- d) Discuss how you would build this 2-port given that all types of controlled sources are available in VLSI circuits (that is, available are: VCCS=Voltage Controlled Current Sources, CCVS, VCVS, CCCS).
- 4. (20 points, 20 minutes)

For the above circuit graph

- a) Using branches 1 and 2 as a tree, give the cut-set, C_1 , and tie-set, T_1 , matrices.
- b) Using the same numbering, repeat using branches 3 and 4 as a tree to give cutset, C₂, and tie-set, T₂, matrices.

c)Find a relationship (=transformation) matrix R such that the cut-set matrices are related by $C_2=R\cdot C_1$ and give the relation between the tie-set matrices T_1 and T_2 .

5. (35 points, 35 minutes)

For the following circuit

a) Set up the semi-state equations, sEx=A(t)x+Be3, $v_{c2}=Cx$, using graph branches pointing down or to the right and numbered as the components. Choose branches 1 and 2 as the tree, the input as e3 and output as the voltage of node II with respect to ground (which is $v_{C2}=x_2$). Use x as tree branch voltages followed by link currents.

b) Using the middle 2-port (comprised of the gyrator and C1) give its 2-port Y and from it give the input admittance, yin(s), seen by the voltage source and the voltage gain, $v_{C2}/e3$.

c) Compare the calculations which would be involved between using the two methods to give the voltage gain.