File: H:/coursesF16/610/610F16Hmwk1.doc RWN 09/04/16

1. (40 points, Fractal Graph)

The following fractal graphs are indexed by positive integers N for which the Nth layer adds one bottom layer to the ($\mathrm{N}-1$)th layer of the N -1st graph with two triangles on the right side added to the previous layers' patterns as illustrated.

a) Give the total number of nodes, ${ }^{n} \mathrm{~N}$, the total number of branches, ${ }^{\mathrm{b}} \mathrm{N}$, the number of tree branches, ${ }_{\mathrm{N}}^{\mathrm{t}}$, and the total number of link branch, ${ }_{\mathrm{N}}$, for $\mathrm{N}=1,2,3$ and 4 .
b) Give a formula for calculating the sub-scripted-N quantities of part a) for any N .
c) For the four triangle graph of $\mathrm{N}=2$, numbered as follows, give the cut set and tie set matrices.

2. (60 points, Van der Pol Oscillator)

The Van der Pol oscillator is described by the state equations:

$$
\begin{aligned}
& \mathrm{dx} / \mathrm{dt}=\mathrm{y} \\
& \mathrm{dy} / \mathrm{dt}=-\omega_{0}{ }^{2} \mathrm{x}+\varepsilon\left(\mathrm{r}^{2}-\mathrm{x}^{2}\right) \mathrm{y}
\end{aligned}
$$

a) Set this up in Spice using two capacitors and G or GVALUE components. Normalize to $\mathrm{r}=1$ and $\omega_{0}=1$ but with ε as a parameter. Run transient analysis for $\varepsilon=0.01,1$ and 10 and for each plot the phase plane trajectory of $y(t)$ versus $x(t)$ (with x on the horizontal axis and y on the vertical; this can be set via the PLOT menu in PSpice). First use initial conditions $\mathrm{x}(0)=\mathrm{y}(0)=0$ and then investigate others including $\mathrm{x}(0)=\mathrm{y}(0)=2$.
b) Draw a graph for the resulting circuit and choose a tree which includes the two capacitors. Represent a G components by two branches (these being the input voltage sensor and the output current source).

