File: G:/coursesF16/303H/303HF16Final.doc RWN M 12/19/16
ENEE 303H Final Exam - Fall 2016
150 points, 2 hours, open book, open notes. Notebooks are due with the exam.
Good luck and have a good semester break
Of use may be that the s-domain operation on the unit step function $1(\mathrm{t})$ is $1 / \mathrm{s}$ and on $\mathrm{e}^{\mathrm{at}} 1(\mathrm{t})$ is $1 /(\mathrm{s}-\mathrm{a})$

1. (60 points, 40 minutes)

For the circuit of this problem assume that $\mathrm{Cgs}=\mathrm{Cgd}=0$ and when in saturation the transistor is described by

$$
\mathrm{I}_{\mathrm{D}}=\mathrm{k}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{VTO}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{DS}}\right)
$$

The turn-on voltage is $\mathrm{VTO}=1 \mathrm{~V} ; \mathrm{VDD}=6 \mathrm{~V}, \mathrm{VGG}=3 \mathrm{~V}$. vi is a small signal voltage source input while $\mathrm{R}=1 \mathrm{~K} \Omega$ and $\mathrm{C}=1 \mu \mathrm{Fd}$. The Q point drain current value is $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$

a) Find the Q point values of V_{GS} and V_{DS}; verify that the transistor is in saturation.
b) If $\lambda=0.1$ give the value of k.
c) Give the value of g_{m} and g_{o} of the transistor at the Q point.
d) Draw the small signal equivalent circuit.
e) Give the small signal voltage transfer function $T(s)=v o / v i$.
2. (60 points, 40 minutes)

For the following circuit, assume Mp and Mn are fully complementary with $\mathrm{k}=10^{-6}, \mathrm{C}=1 \mathrm{uFd}$, $\mathrm{VDD}=6 \mathrm{~V}$ and $\mathrm{VTO}_{\mathrm{p}}=-\mathrm{Vdd} / 6$. Also assume λ, Cgs, and Cgd all zero, as well.

a) If, at $t=0-, v o=v i=V D D / 2$, and then the input changes to $v i(t)=0$ for $0<t$ show that for $0<t \mathrm{Mp}$ will be in the Ohmic state and give the state of Mn.
b) Set up the differential equation for $\mathrm{x}(\mathrm{t})=\mathrm{VDD}-\mathrm{vo}(\mathrm{t})$ for $0<\mathrm{t}$
c) Give the time t_{5} at which $\operatorname{vo}\left(\mathrm{t}_{5}\right)=5$.
3. (30 points, 20 minutes)

For this circuit where n is a positive integer and all element values are non-negative:
a) Give the input admittance $y(s)$ and its poles along with one of its zeros.
b) For $\mathrm{n}=2$ and $\mathrm{R} 1=\mathrm{R} 2=0, \mathrm{~L} 1=\mathrm{L} 2=1$ and $4 \mathrm{C} 2=\mathrm{C} 1=1$, give the current response to a unit step function of voltage when all initial conditions (at $\mathrm{t}=0-$) are zero.

