File: G:/coursesF15/303H/303HF15Final.doc RWN M 12/14/15
ENEE 303H Final Exam - Fall 2015 Take Home: Due by 10am M 12/14/15 @ classroom 150 points, 2 hours, open book, open notes. Notebooks are due at the end of the exam. Good luck and have a good semester break

1. (50 points, 30 minutes)

For the circuit of this problem assume that when in saturation the transistor is described by $\mathrm{i}_{\mathrm{D}}=\mathrm{k}\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{VTO}\right)^{2}$
The turn-on voltage is VTO $=1$; VDD and VGG are ideal DC bias voltage sources and vi is the input small signal voltage source.

a) Find the smallest VDD, VDDmin, for which the transistor is in saturation when the maximum of vi is VGG=3V.
b) Assuming that VDD \gg VDDmin, $\mathrm{R}=1 \mathrm{KOhm}$ and $\mathrm{i}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ is the steady state when no signal input is applied (that is, vi=0), find the transistor parameter k .
c) Under the bias conditions of b) assume further that $\mathrm{C}=1$ microFd. Set up the differential equation for $v o(t)$ for $t>0$ when at $t=0$ the input voltage vi changes from 0 to 1 Volt (where it remains). Normalize the highest order derivative coefficient to be 1 .
2. (50 points, 30 minutes)

For the following circuit, assume Mp and Mn are fully complementary with λ and $\mathrm{Cgs}=\mathrm{Cgd}=\mathrm{C}$ nonzero, as well as VDD large enough for proper operation.
a) Give the transconductance and output conductance, gm and go, of each transistor at the bias point $\mathrm{Vi}=\mathrm{VDD} / 2$
b) Draw the small signal equivalent circuit (include the input source and transistor capacitors) for the circuit when biased at $\mathrm{Vi}=\mathrm{VDD} / 2$.
c) Give the small signal transfer function $\operatorname{Vo}(\mathrm{s}) / \mathrm{Vi}(\mathrm{s})$ and find its poles and zeroes.

3. (50 points, 20 minutes)

In the following circuit at $t=0$ the switch S opens. Assume that the transistors are identical with 0.7 V from emitter to base (and that their current mirror acts ideally for its load, that is for all C,R2 \& S). Assume also that Vcc=5V.
a) Find R1 to give a current of 1milliAmp. DC in R1.
b) If $\beta=100$, what will be the current out of Q2?
c) Give the differential equation for the output voltage, vo(t). Give its solution and sketch vo(t) for any positive finite C \& R2.

File: G:/coursesF15/303H/303HF15Final.doc RWN M 12/14/15
ENEE 303H Final Exam - Fall 2015 Take Home: Due by 10am M 12/14/15 @ classroom 150 points, 2 hours, open book, open notes. Notebooks are due at the end of the exam. Good luck and have a good semester break

1. (50 points, 30 minutes)

For the circuit of this problem assume that when in saturation the transistor is described by $\mathrm{i}_{\mathrm{D}}=\mathrm{k}\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{VTO}\right)^{2}$
The turn-on voltage is VTO $=1$; VDD and VGG are ideal DC bias voltage sources and vi is the input small signal voltage source.

a) Find the smallest VDD, VDDmin, for which the transistor is in saturation when the maximum of vi is VGG=3V.
b) Assuming that VDD \gg VDDmin, $\mathrm{R}=1 \mathrm{KOhm}$ and $\mathrm{i}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ is the steady state when no signal input is applied (that is, vi=0), find the transistor parameter k .
c) Under the bias conditions of b) assume further that $\mathrm{C}=1$ microFd. Set up the differential equation for $v o(t)$ for $t>0$ when at $t=0$ the input voltage vi changes from 0 to 1 Volt (where it remains). Normalize the highest order derivative coefficient to be 1 .
2. (50 points, 30 minutes)

For the following circuit, assume Mp and Mn are fully complementary with λ and $\mathrm{Cgs}=\mathrm{Cgd}=\mathrm{C}$ nonzero, as well as VDD large enough for proper operation.
a) Give the transconductance and output conductance, gm and go, of each transistor at the bias point $\mathrm{Vi}=\mathrm{VDD} / 2$
b) Draw the small signal equivalent circuit (include the input source and transistor capacitors) for the circuit when biased at $\mathrm{Vi}=\mathrm{VDD} / 2$.
c) Give the small signal transfer function $\operatorname{Vo}(\mathrm{s}) / \mathrm{Vi}(\mathrm{s})$ and find its poles and zeroes.

3. (50 points, 20 minutes)

In the following circuit at $t=0$ the switch S opens. Assume that the transistors are identical with 0.7 V from emitter to base (and that their current mirror acts ideally for its load, that is for all C,R2 \& S). Assume also that Vcc=5V.
a) Find R1 to give a current of 1milliAmp. DC in R1.
b) If $\beta=100$, what will be the current out of Q2?
c) Give the differential equation for the output voltage, vo(t). Give its solution and sketch vo(t) for any positive finite C \& R2.

