1. (50 points, degree one design)

For the admittance $y(s)=[a s+b] /[s+c]$ use the Richards' sections of class (gyrator-capacitor in parallel) to give a design for all real and positive a, b, c. Discuss what happens when $\mathrm{a}=0$ and/or $\mathrm{c}=0$ and what will happen if $\mathrm{a}=-\mathrm{b}=\mathrm{c}=-1$ as well as $a=-b=-c=-1$.
2. (50 points, state variables and indefinite admittance)

For the following circuit (of homework 3) let z_{L} be a resistor, RL .
a) Find the indefinite admittance numbering the left node 1 , the right node 2 , the middle node 3 and the bottom node 4 .
b) Ground node 4 , eliminate nodes 3 and 2 to obtain the input admittance $y(s)$.
c) Assume an input current source, i_{in}, is feeding from ground into the left node and the output is the voltage, $\mathrm{v}_{\text {out }}$, at node 2 (across the resistor, R_{L}, with respect to ground). Set up the state variable equations (with the current i_{L} in the inductor as the state) and from them find the transfer function, $v_{\text {out }} / i_{\text {in }}$.

