File: G:/coursesF13/610/610F13Hmwk6.doc RWN 10/14/13

610 Fall 20123- Homework 6 Due Th 10/24/13

1. (20 points) (Lossless Synthesis) Synthesize by the two Cauer and the two Foster forms the lossless admittances and compare the results.

$$
\begin{aligned}
& y_{1}(s)=\frac{s\left(s^{2}+4\right)}{\left(s^{2}+1\right)\left(s^{2}+5\right)} \\
& y_{2}(s)=\frac{\left(s^{2}+1\right)\left(s^{2}+5\right)}{s\left(s^{2}+4\right)}
\end{aligned}
$$

2. (20 points) (RC synthesis) Replace each L by an R in the above syntheses and give the resulting RC admittances. Compare degrees of the different $\mathrm{y}(\mathrm{s})$ obtained, including LC versus RC.
3. (25 points) (Minimum $y(s))$ Show that $y(s)=\left[s^{2}+s+2\right] /\left\{s^{2}+s+1\right\}$ is PR with no pole or zero on the $\mathrm{j} \omega$ axis. Sketch $\operatorname{Re}(\mathrm{y}(\mathrm{j} \omega)$ and find the minimum value of $\operatorname{Re}(\mathrm{y}(\mathrm{j} \omega))=\mathrm{g}$. Show that $\mathrm{zl}(\mathrm{s})=1 /[\mathrm{y}(\mathrm{s})-\mathrm{g}]$ is PR but still without a pole on the $\mathrm{j} \omega$ axis; locate the even part zeroes of $\mathrm{z} 1(\mathrm{~s})$ and $\mathrm{y}(\mathrm{s})$ and compare.
4. (35 points) (Synthesis from state equations) Set up the companion matrix form of statevariable equations for the admittance $y(s)=\frac{3 s^{2}+2 s+1}{s^{2}+3}$. Check if this is a PR $y(s)$. Synthesize the resulting 3-port admittance matrix, loaded in two unit capacitors, and check by analyzing the circuit that $\mathrm{y}(\mathrm{s})$ results.
(Research type problem). Show that the following is positive-real and discuss the position and nature of its singularities (note that a limit of poles is an essential singularity and all real numbers are limits of rational numbers).

$$
\mathrm{y}(\mathrm{~s})=\sum_{\mathrm{k}=1}^{\infty} \sum_{\mathrm{m}=1}^{\infty} \operatorname{coth}\left(\mathrm{s} \frac{\mathrm{k}}{\mathrm{~m}}\right)
$$

Related to this is that the following formulas hold for the lossless positive-real tanh and cotanh $=$ coth which are related to transmission lines.

$$
\begin{aligned}
& \tanh (\mathrm{s})=2 \mathrm{~s}\left[\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\left(\mathrm{~s}^{2}+\left(\mathrm{n}+\frac{1}{2}\right)^{2} \pi^{2}\right)}\right] \\
& \operatorname{coth}(\mathrm{s})=\frac{1}{\mathrm{~s}}+2 \mathrm{~s}\left[\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\left(\mathrm{~s}^{2}+(\mathrm{n} \pi)^{2}\right)}\right]
\end{aligned}
$$

