File: G:/coursesF13/610/610F13Hmwk5.doc RWN 10/06/13
610 Fall 2012 - Homework 5 due $\mathrm{Th} 10 / 17 / 13$

1. (25 points) (PR properties)
a) Prove that a PR function of $1 /(a \operatorname{PR}$ function) is PR..
b) Evaluate $\mathrm{y} 1(1 / \mathrm{y} 2(\mathrm{~s}))$ for the PR functions

$$
\begin{aligned}
& \mathrm{y} 1(\mathrm{~s})=\frac{3 \mathrm{~s}}{\mathrm{~s}^{2}+2}+5 \\
& \mathrm{y} 2(\mathrm{~s})=\frac{4 \mathrm{~s}}{\mathrm{~s}^{2}+1}+3
\end{aligned}
$$

c) Synthesize the admittances $\mathrm{y} 1 \& \mathrm{y} 2$ of b$)$ and from those synthesize $\mathrm{y} 1(1 / \mathrm{y} 2(\mathrm{~s}))$
2. (25 points) (more PR properties)

For the admittance

$$
y(s)=\frac{s\left(s^{2}+a s+b\right)}{\left(s^{2}+4\right)(s+c)}
$$

a) Give conditions on the constants a, b, c such that $y($.$) is PR. Include the separate$ case of $\mathrm{c}=0$.
b) Synthesize the PR $y(s)$.
c) In the case $\mathrm{c}=0$ discuss what will change if one were to synthesize the non-PR $y(s)$.
3. (50 points) (Richards' function synthesis)
a) Synthesize, using the Richards' function and gyrator-C, 2-ports in cascade, the lossless admittance $\mathrm{y}(\mathrm{s})=\frac{2 \mathrm{~s}\left(\mathrm{~s}^{2}+4\right)}{\mathrm{s}^{2}+2}$. Use $\mathrm{k}=1$ where possible and discuss the effect of using possibly different k .
b) Compare with the Cauer and Foster forms.

