1. (50 points, reduction of Ydef to Y2-port)

For the 4×4 Ydef found in class of 09/24/13 find the Y2-port by first setting i4=0, finding the resulting 3 X 3 admittance $\left\{\right.$ this divides by $\mathrm{G}_{\mathrm{S}}+\mathrm{g}_{\mathrm{m}}+\mathrm{sC}_{\mathrm{g}}$ \}, and then setting $\mathrm{i} 3=0$ to get the 2×2 Y2-port. (use in both cases the partition of an admittance to get the admittance reduced by elimination of currents:
$\mathrm{Y}_{11}-\mathrm{Y}_{12} \mathrm{Y}_{22}{ }^{-1} \mathrm{Y}_{21}$ where Y_{22} in both cases will be 1x1). Discuss differences from the case where i3 and i4 are simultaneously set to zero..
2. (25 points, dual graph)

For the RC phase shift oscillator of the additional problem of Homework 2
a) Set up the graph as described there and give the cut-set and tie-set matrices.
b) Show that this is a planar graph
c) Using that graph obtain the dual graph and give its cut-set and tie-set matrices.
d) Show that this dual graph is planar and that its dual is the original graph.
3. (25 points, indefinite Y matrix).

For the RC phase shift oscillator of the additional problem of Homework 2 obtain the small signal indefinite admittance matrix using the node numbers given (except 0 replaced by 5). And then ground node 5 to obtain the 4×4 nodal admittance matrix. Discuss what you would do with it to get the characteristic equation (you need not actually find).

