610 Fall 2013 - Homework 2 due Th 09/26/13

1. (50 points, semistate equations)

A circuit has the following semistate matrices, for $\mathrm{Edx} / \mathrm{dt}=\mathrm{Ax}+\mathrm{Bu}, \mathrm{y}=\mathrm{Cx}$,

$$
\mathrm{E}:=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\mathrm{C} 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathrm{~L} 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{cccc}
0 & \mathrm{~g} 1 & 0 & 0 \\
-\mathrm{g} 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\mathrm{~g} 1 & 0 & -1 & 0
\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right) \quad \mathrm{C}:=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Assuming that $\mathrm{C} 1, \mathrm{~L} 1$ and g 1 are all positive
a) Using permutations transform the system so that E is the direct sum of 1_{2} and 0_{2}.
b) Eliminate the last two rows (by solving for the last two components of x in terms of the first two components) to obtain state variable equations.
b) Find the transfer function 2×2 matrix, $T(s)=C(s E-A)^{-1} B$, where E is the above 4×4 matrix. Check by using the state variable equations (which have a Du term in the output, y, equation).

Additional Problem Not for Grading (RC phase shift oscillator)
The following circuit is an RC phase shift oscillator. .
a) Replace the npn transistor by a small signal pi equivalent circuit (using only r_{π} and g_{m} assuming go $=0$ and ignoring C_{π}). Find a set of semistate equations when $C 1=C 2=C 3=c, R 1=R 2=R L=1 / g, r_{\pi}=\beta / g_{m}$ (ignore the biasing components Ra , Rb, RE, Cbypass). Use branches of C1, C2, C3 and RL for a tree and include series initial capacitor voltages, ICs, as terms in the input u (via unit step functions), orienting them + on the left side. Take $v L$ as the output.
b) Find the characteristic polynomial, $\mathrm{p}(\mathrm{s})=\operatorname{det}(\mathrm{Es}-\mathrm{A})$, and from it show that c / g and bias collector current I_{C} for $\mathrm{gm}=\mathrm{I}_{\mathrm{C}} / \mathrm{V}_{\mathrm{T}}, \mathrm{g}_{\pi}=\mathrm{g}_{\mathrm{m}} / \beta$ can be used to force $p\left(j \omega_{0}\right)=0$ for some real ω_{0}. (the Spice model for the 2N2222 has $\beta=256$). Determine the range of ω_{0} for which c / g is positive (giving a realizable oscillator)

