EE 610 Final Exam Fall 2013
Open Book Open Notes 150 points, 2 hours.
Notebooks are due at the end of the exam. Good luck and have a good semester break.

1. (50 points, 30 minutes)

Consider a passive RC admittance $y(s)$ of degree n with a pole at infinity
a) Give $y(s)$ in partial fraction form.
b) Sketch $\mathrm{y}(\sigma)$ for all real σ for $\mathrm{n}=1$, for $\mathrm{n}=2$ and for $\mathrm{n}=3$.
c) Form $\operatorname{Even}(\mathrm{y}(\sigma))$ for general n and sketch for the three cases of part b).

Comment on the special cases of $y(0)=0$.
d) Determine when a synthesis can be based upon Richards' functions with extractions at real positive k .
2. (50 points, 30 minutes)

For the following circuit, number the non-ground nodes 1, 3, 2 from left to right.
a) Insert current sources from ground to nodes $1 \& 2$..

Draw the graph for the resulting circuit numbering branches 1 to 7 from left to right (the gyrators being represented each by two branches, one at each of its ports) orienting branches $1 \& 7$ up and the others down.
b) Use branches 1,4 and 7 as the tree and give the cut-set and tie-set matrices. .
c) Remove the ground and call the remaining node 4 . Then find the 4×4 indefinite admittance Yind(s) of the given circuit.
d) Ground node 4 and eliminate node 3 to obtain the 2-port admittance matrix.
e) Load port two (the right side) by a capacitor, C_{2}, and find the input admittance, $\mathrm{y}_{\mathrm{in}}(\mathrm{s})$ (seen looking into left port).
f) Determine when $\mathrm{y}_{\mathrm{in}}(\mathrm{s})$ is an RC driving point admittance.

3. (50 points, 30 minutes)

Consider two state variable described systems, one described by

$$
\mathrm{dx}_{1} / \mathrm{dt}=-3 \mathrm{x}_{1}+3 \mathrm{u}_{1}, \mathrm{y}_{1}=\mathrm{x}_{1}
$$

and the other by

$$
\mathrm{dx}_{2} / \mathrm{dt}=-6 \mathrm{x}_{2}+2 \mathrm{u}_{2}, \mathrm{y}_{2}=5 \mathrm{x}_{2} .
$$

These are connected in cascade ($\mathrm{y}_{1}=\mathrm{u}_{2}, \mathrm{u}_{1}=\mathrm{u}, \mathrm{y}_{2}=\mathrm{y}, \mathrm{x}=\left[\mathrm{x}_{1} \mathrm{x}_{2}\right]^{\mathrm{T}}$)
a) Give the state variable equations for the cascade.
b) Give the transfer function $T(s)$ of the cascade.
c) For $\mathrm{u}=\mathrm{v}=$ input voltage and $\mathrm{y}=\mathrm{i}=$ input current, give a constant 3×3 coupling admittance matrix, Y_{c}, which when loaded in unit capacitors yields the input admittance $T(s)=y_{\text {in }}(s)=i / v$

