File G/courses/F2013/303H/303HF13hmrk6.doc RWN 10/06/13 303H Fall 2013

Homework 6 – due Tu 10/22/13

1. 50 points (CMOS inverter V_{IH} & V_{IL})

For the CMOS inverter using 4007 transistors

a) Run Spice with V_{DD} =5V and determine from the curves V_{IH} & V_{IL} . And compare the results with {Eqs. (4.148)&(4.149) [p. 341] see also Eq. (10.11)[p. 957]}

 $V_{IH} = (1/8)(5V_{DD} - 2VTOn)$

- b) Repeat part a) for $V_{DD}=9V$.
- c) Compare the two cases (of V_{DD} =5 vs V_{DD} =9) and explain differences between them and Eq. (10.11).
- 2. 50 points (inverter small signal & frequency response) For the inverter of problem 1, assume v_{in} is a small signal applied at the common gates with the circuit Q point at $V_{IN}=V_{OUT}$.
 - a) Determine V_{IN} for $V_{IN} = V_{OUT}$ and apply that as bias to the gates.
 - b) From the equivalent circuit find the low frequency gm (=y21) and go (=y22) for the inverter as a 2-port biased as in part a).
 - c) Add to the equivalent circuit the transistors Cgs terms and obtain the transfer function $T(s)=v_{out}(s)/v_{in}(s)$. Give its zeroes and poles.
 - d) Run a frequency response in Spice from 100Hz to 100MegHz and check how this agrees (or disagrees) with the result of part c).

[research & open problem] Develop an equation for V_{IH} with nonzero λ and not completely complementary transistors.