Use a CMOS 4007 pair to construct an inverter. Use one battery of $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, for use of the inverter in binary circuits where a 1 is represented by V_{DD} and 0 by ground $=0 \mathrm{~V}$. (All voltages are measured with respect to ground, the input is at the common gate and the output is at the common drain; the bulks are tied to the sources). Submit the mentioned plots.
a) For an open circuit load do a DC run in Spice plotting Vout versus Vin for $0 \leq \mathrm{Vin} \leq \mathrm{V}_{\mathrm{DD}}$. Determine the Vout value for Vin= $\mathrm{V}_{\mathrm{DD}} / 2$; comment on any deviation from Vout $=\mathrm{V}_{\mathrm{DD}} / 2$.
b) Make three plots on one page (use PSpice "add a plot") one for Vout vs Vin, a second one for the NMOS VDS and VGS-VTO vs Vin, and the third one for the PMOS of VSD and VSG-IVTOI vs Vin. From these determine at what Vin the CMOS transistors are in the saturation and when in the Ohmic (=triode) regions.
c) Repeat part a) but change the battery to $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$.
2. 50 points (inverter transient response)

For the above inverter with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
a) Run a transient response for $\operatorname{Vin}(\mathrm{t})$ a step-like function rising from 0 to $V_{D D}$ with rise time of $2 p S$, plotting $\operatorname{Vout}(t)$ and $\operatorname{Vin}(t)$ in the same plot. Repeat for $\operatorname{Vin}(\mathrm{t})$ a step-like function falling from V_{DD} to 0 with fall time of 2 pS . Compare the responses commenting upon delay through the inverter. (Run the curves for sufficient time to go to at least 90% of the final output voltage of 0 or $V_{D D}$).
b) Repeat part a) when the output is loaded with a 10 nFd capacitor (from output to ground), assuming the capacitor initial condition (IC) at $t=0$ is the complement of the input voltage at $\mathrm{t}=0$. Compare the rising and falling responses and also compare with those of part a).
c) Repeat part a) when $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$.

