File: G/coursesF13/303H/303HF13Midtrm.doc RWN 10/28/13
ENEE 303H Fall 2013 - Midterm Exam Th 11/07/13
Open book open notes but not open computers; 100 points total (75 minutes); if stuck go on to the next problem. Good luck

For the following problems use $\mathrm{VDD}=10 \mathrm{~V}$.
For the npn transistors: $\beta=100, \mathrm{VA}=100 \mathrm{~V}, \mathrm{C}_{\pi}=10 \mathrm{pFd}, \mathrm{C}_{\mu}=0$; bias $\mathrm{VBE}=0.7$
For pnp transistors, assume they are completely complementary to the npn ones.
For the NMOS transistors: $\mathrm{KP}=5 \times 10^{-4}$, $\mathrm{VTO}=1$, $\mathrm{LAMBDA}=0.01, \mathrm{~W} / \mathrm{L}=$ to be chosen.
For PMOS transistors, they are completely complementary to the NMOS ones.

1. (30 points, 20 min)

Design a current mirror using two pnp transistors and a resistor to source a current of 3 mA . If this gives 3 mA at an output voltage of 8 V determine the output current at 9 V .
2. (30 points, 20 min)
a) Find I_{S} for Mp when $\mathrm{W} / \mathrm{L}=1$.
b) Give the power delivered by the two batteries.

3 (40 points, 25 min)
For the following circuit assume that W / L is chosen such that Vo is biased to $\mathrm{Vo}=3 \mathrm{~V}$
a) Give numerically the transistor's source current I_{S}, gm and go.
b) Draw the small signal equivalent circuit including Cgs \& Cgd using generic symbols (= without numerical values).
c) Find (without numerical values) the small signal voltage gain, vo/vi(s) and give its poles and zeros.
d) Evaluate numerically the poles and zeros when $\mathrm{Cgs}=\mathrm{Cgd}=5 \mathrm{pFd}$.

