File: G:/coursesF12/610/610F12Hmwk6.doc RWN 10/03/12
610 Fall 2012 - Homework 6

1. Synthesize by the two Cauer and the two Foster forms the lossless admittances

$$
\begin{aligned}
& y_{1}(s)=\frac{s\left(s^{2}+3\right)}{\left(s^{2}+1\right)\left(s^{2}+5\right)} \\
& y_{2}(s)=\frac{\left(s^{2}+1\right)\left(s^{2}+5\right)}{s\left(s^{2}+3\right)}
\end{aligned}
$$

2. Replace each L by an R in the above syntheses and give the resulting $R C$ admittances. Compare degrees of different $y(s)$, including LC versus RC.
3. Set up the companion matrix form of state-variable equations for the admittance

$$
\mathrm{y}(\mathrm{~s})=\frac{3 \mathrm{~s}^{2}+2 \mathrm{~s}+1}{\mathrm{~s}^{2}+2}
$$

and synthesize the resulting 3-port admittance matrix, loaded in two unit capacitors, and check by analyzing the circuit that $y(s)$ results.
4. From Homework \#5, problem 5, the following formulas hold for the lossless positivereal tanh and cotanh $=$ coth.
$\tanh (\mathrm{s})=2 \mathrm{~s}\left[\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\left(\mathrm{~s}^{2}+\left(\mathrm{n}+\frac{1}{2}\right)^{2} \pi^{2}\right)}\right]$
$\operatorname{coth}(\mathrm{s})=\frac{1}{\mathrm{~s}}+2 \mathrm{~s}\left[\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\left(\mathrm{~s}^{2}+(\mathrm{n} \pi)^{2}\right)^{2}}\right]$
Using these give second Foster and second Cauer type syntheses of $y(s)=\operatorname{coth}(s l)$ [which represents a normalized shorted transmission line of length 1].
5. (conceptually challenging). Show that the following is positive-real and discuss the position and nature of its singularities (note that a limit of poles is an essential singularity and all real numbers are limits of rational numbers).

$$
\mathrm{y}(\mathrm{~s})=\sum_{\mathrm{k}=1}^{\infty} \sum_{\mathrm{m}=1}^{\infty} \operatorname{coth}\left(\mathrm{s} \frac{\mathrm{k}}{\mathrm{~m}}\right)
$$

