1. For the following circuit
a) Give the indefinite admittance matrix Yind(s).
b) Ground node 4 and eliminate node 3 to give the 2-port $\mathrm{Y}(\mathrm{s})$; obtain

2. For the result of Problem 1, evaluate the even part of $Y(s)$ and the even part of $\mathrm{Z}(\mathrm{s})$, compare, and discuss the even part zeros in terms of $\mathrm{G}=1 / \mathrm{R}$
3. Using the 2-port $\mathrm{Y}(\mathrm{s})$ of problem 1 , set $\mathrm{C}=\mathrm{G}=0$ and
a. Find the load impedance $\mathrm{z}_{\mathrm{L}}(\mathrm{s})$ in terms of the input impedance $\mathrm{z}(\mathrm{s})$.
b. Equate with the Richards function of the text and discuss the possibility for lossless synthesis.
4. The following 2-port circuit has the input port at nodes 1-5 and the output at nodes 2-5.
a. Give the transfer function $\mathrm{T}(\mathrm{s})=\mathrm{V}_{2-5}(\mathrm{~s}) / \mathrm{V}_{1-5}(\mathrm{~s})$ when fed by a voltage source and having an open-circuit load.
b. Discuss why we know there is at least one real pole or zero.
c. Assume $\mathrm{C} 4=\mathrm{C} 5=\mathrm{C}$ and $\mathrm{R} 1=\mathrm{R} 2=\mathrm{R}$, normalize $\mathrm{L}=\mathrm{R}=\mathrm{C}=\mathrm{gm}=1$. Give the normalized $\mathrm{T}(\mathrm{s})$ and find the poles and zeros.
d. Give the unit step response and the impulse response of the normalized circuit.

