610 Fall 2012 - Homework 2

1. For the circuit giving the semistate equations covered in the class notes of 09/06/12 replace the VCCS by an ideal op-amp (necessitating adding a branch 7 across C 1); also add a resistor R1 in series with v_{i} as part of branch 1 .
a) Give the new graph, the new cut-set and tie-set matrices, and the $\mathrm{Av}=\mathrm{Bi}$ descriptions using as much of the graph used in class as possible.
b) From those give the semistate equations using v_{t} and i_{1} as components of the semistate x.
c) Indicate what problems are anticipated in using these equations if $\mathrm{R} 1=0$.
2. A circuit has the following semistate matrices:

$$
\mathrm{E}:=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\mathrm{C} 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathrm{~L} 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{cccc}
0 & \mathrm{~g} 1 & 0 & 0 \\
-\mathrm{g} 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\mathrm{~g} 1 & 0 & -1 & 0
\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right) \quad \mathrm{C}:=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Assuming that $\mathrm{C} 1, \mathrm{~L} 1$ and g 1 are all positive
a) transform the system so that E is the direct sum of 1_{2} and 0_{2}.
b) Eliminate the last two rows to obtain state variable equations.
b) Find the transfer function 2×2 matrix, $T(s)=C(s E-A)^{-1} B$, where E is the above 4×4 matrix.
3. Find the characteristic polynomial and the minimal polynomial for the 4 x 4 A matrix of problem 2 above.
4. Find a singular valued decomposition for the above E . for $\mathrm{C} 1=2, \mathrm{~L} 1=5$. In MathCad this can be done with the following commands (after setting array origin to 1 in the tools, worksheet options, menu)

$$
M:=\operatorname{svd} 2(E) \quad M=\left(\begin{array}{l}
\{4,1\} \\
\{4,4\} \\
\{4,4\}
\end{array}\right) \quad \text { s: }:=M_{1} \quad \text { sd }:=\operatorname{diag}(\mathrm{s}) \quad U:=M_{2} \quad \mathrm{~V}:=\mathrm{M}_{3}
$$

Note that U and V are orthogonal matrices and check by

$$
\mathrm{E} 2:=\mathrm{U} \cdot \mathrm{sd} \cdot \mathrm{~V}
$$

