1. 50 points (OTA)
a) Design a DVCCS using 4007 CMOS transistors with a tail current of $\mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA}$ such that Iout $=\mathrm{I} 1-\mathrm{I} 2\left(\right.$ delete $\left.=\mathrm{I}_{\mathrm{T}}\right)$ for large positive vin. Calculate the Gm value at the vin=vid $=0$. Use $\mathrm{Vdd}=-\mathrm{Vss}=5 \mathrm{~V}$.
b) Do a DC run of Spice to give the Iout versus vin=vid curves and check the value of Gm obtained.
c) Run a frequency response of Iout versus v1 with v2 $=0$ from 10 Hz to 100 MHz .
d) Rerun the DC curves to obtain the curves of b) and on the same graph compare with the formula Iout $=\mathrm{I}_{\mathrm{T}} * \tanh \left(\operatorname{vin} /\left(2 \mathrm{~V}_{\mathrm{T}}\right)\right)$ [you can use a Gvalue for this]
2. 50 points (NAND Gate)

Use the 4007 CMOS transistors to make a NAND gate (as in Figure 13.32 of the text) using Vdd=5V.
a) Run a Spice transient response with the voltages for A and B coming from pulses which switch on a milli-second scale between 0 and Vdd to cover all four bit possibilities.
b) Repeat by switching bits on a nano-second scale and comment on the results.

