1. (50 points, BJT curves)

Run simultaneous DC curves for the BJT 2N3904 \& 2N3906 of IC versus VCE for the npn and VEC for the pnp with IB as a parameter to get curves of the type of Figure 6.19 of p. 375.
For this you can use one current source Iin for the base currents into two F components with their outputs being IB for the two transistors (note the negative sign on the pnp IB). And one voltage source Vbias for the collector - emitter voltages.
Submit these curves for $0 \leq$ Vbias $\leq 5 \mathrm{~V}$ in 0.1 V steps nested with $0 \leq \operatorname{Iin} \leq 100 \mathrm{uA}$ in $25 u$ A steps.
2. (50 points, transient transistor sinusoidal analysis)

Use the mnmosis transistor from the bicmos 12 set. [This can be found by downloading from the course web page the transistor files bicmosis12.olb and bicmosis12.lib (or for PSpice 8 the two equivalent files bicmosis12.slb \& bicmosis12.lib). These files may already be installed but if not install them on the computers or folders from which you will run Spice]. Also use a Vsin source.
a) For the following circuit do a transient analysis over 3 mS with a time step limit of 0.003 mS and plot the voltage at the gate and the drain of the transistor versus time. Use the default value of the parameter.
b) Repeat part a) but via a parametric run on R using three values for the load resistor: $10,1 \mathrm{k}$ and 1 Meg . Label with text in the plot the range of R .
c) Repeat part a) but via a parametric run using $\mathrm{Ld}=3 \mathrm{u}, 30 \mathrm{~m}, 300 \mathrm{~m}$

