Open book open notes but not open computers; 100 points total (75 minutes); if stuck go on to the next problem. Good luck

For the following problems $\mathrm{VDD}=\mathrm{VCC}=10 \mathrm{~V}$.
For the npn transistors: $\beta=99, \mathrm{VA}=100 \mathrm{~V}, \mathrm{C}_{\pi}=20 \mathrm{pFd}, \mathrm{C}_{\mu}=0$; bias $\mathrm{VBE}=0.7$
For the NMOS transistors: $\mathrm{KP}=4 \times 10^{-4}$, VTO $=1$, LAMBDA $=0.01$, W/L $=1$
For PMOS transistors: $\mathrm{KP}=2 \times 10^{-4}, \mathrm{VTO}=-1, \mathrm{LAMBDA}=0.01$, W/L depends on problem

1. (30 points, 20 min)
a) Give the value of W / L needed for Mp such that $\mathrm{Vo}=\mathrm{Vi}$
b) Find numerically the range of Vo for which both transistors are in saturation.
c) From b) find numerically the range of W / L of Mp for which both transistors are in saturation.

2. (25 points, 15 min)

For the following circuit assume that $\mathrm{W} / \mathrm{L}(=2 * 125 / 27)$ is chosen such that Vo is biased to $\mathrm{Vo}=2 \mathrm{~V}$
a) Give numerically the transistor's source current IS, gm and go.
b) Draw the small signal equivalent circuit including Cgs \&Cgd using generic symbols (= without numerical values).
c) Find (without numerical values) the small signal voltage gain, vo/vi(s) and give its poles and zeros.
d) Evaluate numerically the poles and zeros when $\mathrm{Cgs}=\mathrm{Cgd}=5 \mathrm{pFd}$.

3. (45 points, 25 min)

The following two circuits are identical except that one uses a BJT and the other a MOSFET (and possibly different Rb).
Note that the bias current sources have the value of 2 mA with 3 V across them (held by the bypass capacitors to give $\mathrm{VS}=\mathrm{VE}=3$).
Assume that the coupling and bypass capacitances, Ci and Cbp , are extremely large and Cbp always holds its initial voltage of 3 V .
a) Find the bias voltages Vo (with respect to ground) and compare,
b) Find the resistor, Rb , values to obtain the desired bias.
c) Find the gm for both and compare; do the same for go. .

