File: G:/coursesF12/303/303F12Final.doc RWN 12/13/12b
ENEE 303 Final Exam - Fall 2012
150 points, open book, open notes. Notebooks are due at the end of the exam.
Good luck and have a good semester break
For the CMOS transistors assume $\mathrm{KP}=3 * 10 \mathrm{E}-4,|\mathrm{VTO}|=1$, LAMBDA $=\lambda=10 \mathrm{E}-6=0.000001$, $\mathrm{W}=\mathrm{L}=10 \mathrm{E}-6$. Use VDD $=10 \mathrm{~V}$.

1. $(50$ points)

For the following inverter, using the above transistor models, the input voltage, vi(t) is a triangular wave with period 2 rising linearly from 0 V to $\mathrm{VDD}=10 \mathrm{~V}$ in 2 seconds.
a) Sketch (in separate sketches) the input, vi(t), and output, vo(t), voltages versus time, for 2 periods.
b) Find the input voltage at which Mp switches from Ohmic (=triode) to Saturation.

2. (50 points)

The following circuit has the DC bias current as $\mathrm{IB}=0.6 \mathrm{~mA}$ and the small signal input current as $\mathrm{i}_{\text {in }}=0.0002 \sin (\mathrm{t})$.
a) Find g_{m} of Mn 1 at the Q point Vo.
b) Set up the differential equation for the small signal steady state output voltage solution, $\mathrm{vo}_{\mathrm{ss}}(\mathrm{t})$. Assume C includes the two Cgs and is normalized to $\mathrm{C}=2 \mathrm{~g}_{\mathrm{m}}$
c) Assume $\mathrm{vo}_{\mathrm{ss}}(\mathrm{t})=\mathrm{A} \sin (\mathrm{t})+\mathrm{B} \cos (\mathrm{t})$ determine A and B .
b) Give the total output voltage, vo(t) [including bias]

3. (50 points,)

A new device has the following symbol

and is described by the 2-terminal device equation

$$
\mathrm{i}=\mathrm{v}[1+\sin (2 \pi \mathrm{v})]
$$

a) Sketch the i versus v curve for $0<v<+1$ giving values at $v=0,1 / 4,1 / 2,3 / 4,1$.
b) Find the small signal conductance for any v in $0<\mathrm{v}<1$.
c) Draw the small signal equivalent circuit for the following circuit and give its small signal voltage gain transfer function, $T(s)=v o / v i(s)$. .
d) Find numerically the zeroes and poles of $\mathrm{T}(\mathrm{s})$ if the battery voltage is $\mathrm{VB}=1$ Volt, $\mathrm{C}=1$ Farad, and the load resistance, RL , is chosen to give a Q point of $1 / 2$ Volt $\left(=V_{O}\right)$ across the device.

