PSet 4 \#1. L-R properties

Using the partial fraction expansion for the first Foster reactance function derive the partial fraction expansion of the impedence $z(s)$ for a passive inductor - resistor circuit. From that, give properties of the poles and zeros of $z(s)$ and $y(s)$ and the even part zeros of $z(s)$. Relate the even part zeros of $z(s)$ to those of $y(s)$.

The first Foster function can be written as:

$$
F_{1}(s)=K \frac{\left(s+\sigma_{1}\right)\left(s+\sigma_{3}\right) \cdots\left(s+\sigma_{m}\right)}{\left(s+\sigma_{2}\right)\left(s+\sigma_{4}\right) \cdots\left(s+\sigma_{n}\right)}
$$

where $0 \leq \sigma_{1}<\sigma_{2}<\sigma_{3} \cdots$ and $m=n \pm 1$.
The partial fraction expansion is therefore given as:

$$
F_{1}(s)=K_{1}+\frac{K_{2} s}{s+\sigma_{2}}+\frac{K_{4} s}{s+\sigma_{4}}+\cdots+\frac{K_{n} s}{s+\sigma_{n}}
$$

This is in the form of a inductor - resistor network circuit since each term $\frac{K s}{s+\sigma}$ can be considered an inductor-resistor pair in parallel: $z(s)=\frac{R L s}{R+L s}$

$$
z(s)=K \frac{\left(s+\sigma_{1}\right)\left(s+\sigma_{3}\right) \cdots\left(s+\sigma_{m}\right)}{\left(s+\sigma_{2}\right)\left(s+\sigma_{4}\right) \cdots\left(s+\sigma_{n}\right)}
$$

Therefore, by looking at the partial fraction expansion of $z(s)$, we see that there are alternating poles and zeros at $s=-\sigma_{1},-\sigma_{3}, \ldots,-\sigma_{m}$ (zeros) and $s=-\sigma_{2},-\sigma_{4}, \ldots,-\sigma_{n}$ (poles).

$$
y(s)=\frac{1}{z(s)}=\frac{1}{K} \frac{\left(s+\sigma_{2}\right)\left(s+\sigma_{4}\right) \cdots\left(s+\sigma_{n}\right)}{\left(s+\sigma_{1}\right)\left(s+\sigma_{3}\right) \cdots\left(s+\sigma_{m}\right)}
$$

Looking at the partial fraction expansion of $y(s)$, we see that there are alternating poles and zeros at $s=-\sigma_{1},-\sigma_{3}, \ldots,-\sigma_{m}$ (poles) and $s=-\sigma_{2},-\sigma_{4}, \ldots,-\sigma_{n}$ (zeros).

To find the even part of the zeros of $z(s)$ we look at the admittance, $y(s)$ and use the formula $f_{e}(x)=\frac{1}{2}[f(x)+f(-x)]:$

$$
y_{e}(s)=\frac{1}{2}\left[\frac{1}{K_{\infty}}+\frac{K_{1} s}{s+\sigma_{1}}+\frac{K_{3} s}{s+\sigma_{3}}+\cdots+\frac{K_{m} s}{s+\sigma_{m}}+\frac{1}{K_{\infty}}+\frac{K_{1} s}{s-\sigma_{1}}+\frac{K_{3} s}{s-\sigma_{3}}+\cdots+\frac{K_{m} s}{s-\sigma_{m}}\right]
$$

This simplifies down to:

$$
y_{e}(s)=\frac{1}{K_{\infty}}+\frac{K_{1} s^{2}}{s^{2}-\sigma_{1}^{2}}+\frac{K_{3} s^{2}}{s-\sigma_{3}^{2}}+\cdots+\frac{K_{m} s^{2}}{s-\sigma_{m}^{2}}
$$

As you can see, the even part of $y(s)$ gives matching poles at $\pm \sigma_{m}$ which means that the even part of $z(s)$ has zeros at $\pm \sigma_{m}$. Similarly for $y(s)$, the even part will have zeros at $\pm \sigma_{n}$.

