(1) If lossless., $I=S^{* \top} S$ Means no energy lost.
B. Kino
, $I=$ identity matrix
$* T=$ Conjugate Transpose.

For passive circuit, incapable of energy gain, $\therefore S^{* T} S \leq 1$
For active circuits, capable of energy gain, $\therefore 5^{* T} s>1$

$$
\begin{aligned}
H= & \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
S^{* T}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] & \text { Circuit is lossless } \\
& S^{* T} S=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{k}{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C= {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] } \\
& C^{* T}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& C^{* T} C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(a) (b)

$$
\begin{aligned}
& H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right] \\
& H_{12}=H_{21} \Rightarrow \text { reciprocal } \\
& H_{11}=-H_{22} \Rightarrow \text { antimetric }
\end{aligned}
$$

using $A B C D$ Parameters: for ideal transformers:

$$
\begin{aligned}
& \text { ideal transformers: } \\
& {\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & \frac{1}{a}
\end{array}\right]\left[\begin{array}{lll}
V_{2} \\
I_{2}
\end{array}\right] \begin{array}{lll}
I_{1} \rightarrow N_{1} & N_{2} & I_{2} \\
V_{1} & 2 & 2
\end{array}}
\end{aligned}
$$

Obtain $A B C D$. Parameters from S-parameters.
(www, rfcate.com V references (electrial/s-h-y-z him)

$$
\begin{aligned}
& A=\frac{\left(1+H_{11}\right)\left(1-H_{22}\right)+H_{12} H_{21}}{2 H_{2}}=\frac{\left(1+\frac{1}{\sqrt{2}}\right)\left(1+\frac{1}{\sqrt{2}}\right)+\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}}{2 \frac{1}{\sqrt{2}}}=\frac{\sqrt{2}+2}{\frac{2}{\sqrt{2}}}=\sqrt{2}+1 \\
& B=\frac{\left(1+H_{11}\right)\left(1+H_{22}\right)-H_{12} H_{21}}{2 H_{21}}=\frac{\frac{1}{2}-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}}{2 \sqrt{\sqrt{2}}}=0 \\
& C=\frac{\left.\left(1-H_{11}\right)\left(1-H_{22}\right)-H_{12} H_{21}\right)}{\left(1-H_{11}\right) H_{21}}=\frac{\frac{1}{2}-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}}{2 \frac{1}{\sqrt{2}}}=0 \\
& D=\frac{\left(1-H_{11}\right)\left(1+H_{22}\right)+H_{12} H_{21}}{2 H_{21}}=\frac{2-\sqrt{2}}{\frac{2}{\sqrt{2}}}=\sqrt{2}-1 \\
& \left.\begin{array}{r}
\sqrt{2}+1: 1 \\
3 \\
3
\end{array}\right] \begin{array}{l}
0 \\
0 \\
0
\end{array} \\
& C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Similar to 3-port
circulator, which is loseless

