## Pset 3 \#1. S matrix for quantum computers

S matrix for quantum computers:
$H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and $C=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
The above two (frequency independent) matricies are the key ones for quantum computing where H is for the Hadamard transformation and C is for the controlled not.

## (a) Passive Circuits

Treating H and C as scattering matrices of a circuit, the circuit is passive if $I_{n}-S^{T *} S \geq 0$ For H:

$$
I_{2}-H^{T *} H=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

For C:

$$
I_{4}-C^{T *} C=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\therefore$ not only are H and C passive, they are lossless as well.

## (b) Passive Circuit Realization

For H , we notice that $H_{12}=H_{21}$, which means that it is reciprocal.
We also notice that $H_{11}=-H_{22}$, which means that it is antimetric.
This suggests a $\mathrm{N}: 1$ transformer with ABCD parameters of $\left[\begin{array}{cc}N & 0 \\ 0 & 1 / N\end{array}\right]$.
Converting H from S parameters to ABCD parameters give:

$$
\begin{aligned}
& A=\frac{\left(1+S_{11}\right)\left(1-S_{22}\right)+S_{12} S_{21}}{2 S_{21}}=\sqrt{2}+1 \\
& B=Z_{0} \frac{\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21}}{2 S_{21}}=0 \\
& C=\frac{1}{Z_{0}} \frac{\left(1-S_{11}\right)\left(1-S_{22}\right)-S_{12} S_{21}}{2 S_{21}}=0 \\
& D=\frac{\left(1-S_{11}\right)\left(1+S_{22}+S_{12} S_{21}\right.}{2 S_{21}}=\sqrt{2}-1
\end{aligned}
$$

Therefore, H is equivalent to a $(\sqrt{2}+1): 1$ transformer:


Looking at C, we see that it is similar to a 3-port circulator in that it is lossless and all energy from one input port is directed to one output port.
Since $S_{13}, S_{14}, S_{23}, S_{24}, S_{31}, S_{32}, S_{41}, S_{42}$ are all 0, we can reduce C into 2 separate matrices:

$$
S^{12}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } S^{34}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Considering $S^{12}$, we see that it is the identity matrix so ports 1 and 2 are open circuits.
Looking at $S^{34}$, it is a pass-through so port 3 inputs will come out at port 4 and vice versa.


