File: f:/courses/fall2010/610/610F10finalexm.doc RWN 12/09/10

EE 610 Final Exam Fall 2010

Take Home. Open Book Open Notes 200 points total
Due in Room AVW 1364 at the final period F 12/17/09 [1:30-3:30pm] along with your notebook. Your signature certifies that the work is your own.

1. (30 points $=6$ points per synthesis) [lossless synthesis]

Synthesize $\mathrm{z}(\mathrm{s})=\frac{\mathrm{s}\left(\mathrm{s}^{2}+8\right)}{\mathrm{s}^{2}+4}$ by 5 methods ($1^{\text {st }} \& 2^{\text {nd }}$ Foster \& Cauer \& via Richards, function sections with $\mathrm{k}=2$)
2. (40 points) [even part zeros]

Given the even part of a function, $\operatorname{Ev}(y)$, one can create a function, y, by adding an odd part. For

$$
2 \mathrm{Ev}(\mathrm{y}(\mathrm{~s}))=\frac{(\mathrm{s}+1)(-\mathrm{s}+1)}{(\mathrm{s}+2)(\mathrm{s}+3)(-\mathrm{s}+2)(-\mathrm{s}+3)}
$$

add 2 times an odd part with a degree three numerator and the same finite poles and from that find $y(s)$ with only left hand finite poles. Is this $y(s) P R$?
3. (40 points $=10$ points per part) [positive-real of positive-real]

Given two positive-real functions $\mathrm{f}(\mathrm{s})$ and $\mathrm{g}(\mathrm{s})$, possibly not rational, it is known that $f(g(s))$ is positive-real.
a) Show mathematically that this is the case.
b) In the rational, $P R$, case, if a circuit is known for each of $f(s)$ and $g(s)$ explain how a circuit for $f(g(s))$ can be obtained. Assume that both $f($.$) and$ g (.) are admittances.
c) Let $f(s)=\frac{s+1}{2 s+3}, g(s)=\frac{s^{2}+5}{4 s}$ be given admittances. Give a circuit for the admittance $\mathrm{y} 1(\mathrm{~s})=\mathrm{f}(\mathrm{g}(\mathrm{s}))$ and one for $\mathrm{y} 2(\mathrm{~s})=\mathrm{g}(\mathrm{f}(\mathrm{s}))$ and discuss important points learned from this example.
d) Give conditions for $\mathrm{f}(\mathrm{g}(\mathrm{s}))=\mathrm{g}(\mathrm{f}(\mathrm{s})$)
4. (50 points $=25$ points per part) [semistate equations]

The following circuit (on next page) represents the extraction of two Richards' sections at positive k 's for an input admittance $y_{i n}(s)$ seen looking into port 1 (on the left). Assume a resistive load of resistance $r>0$ at port 2 (on the right). Use the voltages at nodes $1,2,3$ with respect to ground as semistate variables.

> a) Write the semistate equations $\begin{aligned} & E \frac{d x}{d t}=A x+B u \\ & y=C x\end{aligned}$ for $y_{i n}(s)$ as the transfer $$
y=C \text {. }
$$

function.
b) Find $y_{i n}(s)$ from these semistate equations in terms of the element values.

5. (40 points $=13+$ points per part) [graph and 2 -port admittance]

For the following circuit there are three nodes as numbered (plus the ground $=0$) and 5 branches which are numbered by the components (the transistor M has two branches, 2 and 3).
a) Draw the graph for the circuit with directions from lower to higher numbers.
b) Choose branches 1, 3, 4 for the tree and give the cut set and tie set matrices.
c) Assuming linear operation of the transistor (with gm, go as the only parameters of interest), give the 2-port admittance matrix with port 1 seen by V1 and port 2 as seen at Vout.

