File: G:/coursesF10/610/610F10Todo4.doc RWN 10/12/09 correction 10/26/10 610 Fall 2010 - To do \#4

1. [L-R properties]

Using the partial fraction expansion for the first Foster reactance function derive the partial fraction expansion of the impedance $z(s)$ for a passive inductor resistor circuit. From that give properties of the poles and zeros of $z(s)$ and $y(s)$ and the even part zeros of $z(s)$. Relate the even part zeros of $z(s)$ to those of $y(s)$.
2. [2-element kind synthesis]

Show that each of the following admittances is pr and synthesize each by 5 different methods and compare.
a) $y(s)=\frac{(s+4)(s+6)}{(s+5)}$
b) $y(s)=\frac{(s+5)}{(s+4)(s+6)}$
3. [Transfer function realizations] (3d in a) corrected to 3s)

Create semistate equations, $\mathrm{Edx} / \mathrm{dt}=\mathrm{Ax}+\mathrm{Bu}, \mathrm{y}=\mathrm{Cx}$, for each of the following transfer functions
a) $\mathrm{T}(\mathrm{s})=\frac{2 \mathrm{~s}+10}{\mathrm{~s}^{2}+3 \mathrm{~s}+7}$ \{choose x to be a 2-vector state \}
b) $\mathrm{T}(\mathrm{s})=\frac{\mathrm{s}^{4}+2 \mathrm{~s}+10}{\mathrm{~s}^{2}+5 \mathrm{~s}+6}$
4. [Circuits for transfer functions]

Consider the transfer functions in problem 3 to be voltage to voltage ones, that is, $u=v_{\text {in }}, y=v_{\text {out }}$. For each $T(s)$ create a circuit, possibly active, to yield $\mathrm{T}(\mathrm{s})$.
5. [Time domain]

For each of the transfer functions of problem 3 give
a) The impulse response
b) The unit step response
c) The response due to initial conditions on the "finite" states when $\mathrm{u}=0$.
6. \{extra\}[Transformation of x for equivalent circuits]

For the a) transfer function of problem 3, show the effect on the circuit of putting a transformation K on the state, i.e. let $\mathrm{X}=\mathrm{Kx}$ [here K is 2 x 2]

