File: G:/coursesF10/610/610F10Todo3.doc RWN 10/05/09
610 Fall 2010 - To do \#3

1. [S matrix for quantum computers]

$$
\begin{aligned}
& \mathrm{H}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& \mathrm{C}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

The above two (frequency independent) matrices are the key ones for quantum computing where H is for the Hadamard transformation and C is for the controlled not.
a) Show that these can be considered as scattering matrices of passive circuits.
b) Treat each as a scattering matrix and realize by a passive circuit.
\{Although not necessary for working this problem it is of interest to know that they transform qubits where H is for one qubit and C is for the tensor product of two qubits. Scattering vectors can here be considered as qubits if they have norm 1).
2. [even part zeros]

For $y(s)=\frac{s^{2}+b s+c}{s^{2}+s+1}$
a) Show that this is pr for b \& c both positive.
b) What if one or both are zero?
c) Assuming b \& c both positive find the even part zeros of $y(s)$ and determine for which values these zeros are real.
3. [S matrix normalizations]

Two engineers measure the scattering matrix of a 2-port, one obtains $S_{1}(s)$ with respect to the terminations having $\mathrm{r}_{1}=\mathrm{Z}_{0}$ and the other obtains $\mathrm{S}_{2}(\mathrm{~s})$ with respect to $r_{2}=Z_{0}$. In order to tell if their measurements agree it is necessary to relate S_{2} to S_{1}. Thus, give S_{2} as a function of S_{1} and $r_{1} \& r_{2}$ and check that if $r_{1}=r_{2}$ then $S_{2}=S_{1}$ (hint, the current versus voltage laws are the same in each instance, that is, if Y exists it would be the same for both measurements).

