File: G:/coursesF08/610/610F09Hmwk7.doc RWN 10/18- 11/04/09

1. [100 points] [synthesis via Richards' function]
a) Use the Richards' function to synthesize the admittance

$$
y(s)=\frac{s\left(s^{2}+16\right)}{\left(s^{2}+9\right)}
$$

For this use the gyrator bridged by a capacitor and choose different k (that is $k 1, k 2$, and k 3) for the three sections. Do there appear to be any advantageous k's?
b) Identify all $\mathrm{k}=\mathrm{k} 1=\mathrm{k} 2=\mathrm{k} 3$ and comment on the nature of the result.
c) Repeat part a) on the dual, that is for

$$
\mathrm{zl}(\mathrm{~s})=\frac{1}{y 1(s)}=\frac{\mathrm{s}\left(\mathrm{~s}^{2}+16\right)}{\left(\mathrm{s}^{2}+9\right)}
$$

d) Show that for all real \& positive $\mathrm{a} \& \mathrm{~b}$ there is a real k which is a zero of the even part of

$$
y(s)=\frac{s+a}{s+b}
$$

Use that k to synthesize this $\mathrm{y}(\mathrm{s})$. Comment upon the non-lossless nature of the result.

