File: G:/coursesF08/610/610F09Hmwk5.doc RWN 10/04(13)(15)/09

1. [70 points] [semistate evaluation and design]

For the following semistate equations all the coefficient matrix entries are real valued scalars

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & e_{12} \\
0 & 0
\end{array}\right] \frac{\mathrm{dx}}{\mathrm{dt}}=\left[\begin{array}{cc}
\mathrm{a}_{11} & 0 \\
0 & \mathrm{a}_{22}
\end{array}\right] \mathrm{x}+\left[\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2}
\end{array}\right] \mathrm{u}} \\
& \mathrm{y}=\left[\begin{array}{ll}
\mathrm{c}_{1} & \mathrm{c}_{2}
\end{array}\right] \mathrm{x}
\end{aligned}
$$

a) Find the (scalar) transfer function, $\mathrm{T}(\mathrm{s})$, and show that there are some coefficient values for which $\mathrm{T}(\mathrm{s})=\mathrm{s}$ and another set of coefficients for which $T(s)=1$.
b) Show that the following set of equations can have the same transfer function, T(s)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathrm{E}_{11} & 0 \\
0 & 0
\end{array}\right] \frac{\mathrm{dX}}{\mathrm{dt}}=\left[\begin{array}{cc}
0 & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & 0
\end{array}\right] \mathrm{X}+\left[\begin{array}{c}
\mathrm{B}_{1} \\
\mathrm{~B}_{2}
\end{array}\right] \mathrm{u}} \\
& \mathrm{y}=\left[\begin{array}{ll}
\mathrm{C}_{1} & \mathrm{C}_{2}
\end{array}\right] \mathrm{X}
\end{aligned}
$$

c) Writing these two equivalent semistate equations as edx/dt=ax+bu, $y=c x$
and
EdX/dt=AX+Bu, y=CX
find the transformation pair, P and Q (both nonsingular), $\mathrm{PaQ}=\mathrm{A}$, to go between the two.
d) In the case of $T(s)=s$ with $u=i(c u r r e n t)$ and $y=v$ (voltage) draw an OTA-C circuit to give the semistate equations of b) above.
2. [30 points] [positive and bounded real conditions]

For each of the following functions state a) if it is positive real and b) if it is bounded real as well as c) if it is lossless.
a) $f(s)=\frac{s\left(s^{2}+9\right)\left(s^{2}+25\right)}{\left(s^{2}+4\right)\left(s^{2}+16\right)}$.
b) $\mathrm{f}(\mathrm{s})=\frac{\mathrm{as}+\mathrm{b}}{\mathrm{cs}+\mathrm{d}}, \quad$ a $>\mathrm{b}>\mathrm{c}>\mathrm{d}>0$ otherwise freely chosen (real).
c) $f(s)=\left(\frac{s-2}{s+2}\right)\left(\frac{s^{2}-4 s+4}{s^{2}+4 s+4}\right)$

