1. [50 points] [passive 2-port]

For the above circuit assume that all element values, $\mathrm{C} 1, \mathrm{C} 2, \mathrm{R} 3, \mathrm{gm} 4$, can take on any real number.
a) Calculate the real power into the 2-port when sinusoidal current sources are applied at the ports assuming that the currents have arbitrary amplitudes II1| \& II2I at variable frequency ω.
b) Determine the ranges of element values for which $0 \leq \operatorname{Re}\left(\mathrm{V}^{\mathrm{T}^{*}} \mathrm{I}\right)$ for any sinusoidal input (port) currents, I1 \& I2.
2. [50 points] [semistate/state equations]

In the circuit of problem 1 above replace C 2 by a resistor R 2 . To simplify notation change the name of C 1 to C and gm4 to g .
a) Set up the semistate equations taking the port currents as inputs and the port voltages as outputs. Use x as the tree branch voltages [use branches $1,6,7$ for these] and link currents, $x=\left[v_{t}{ }^{T} i_{1}{ }^{T}\right]^{T}$.
b) Reduce these equations to state variable ones, $\mathrm{dv} 1 / \mathrm{dt}=\mathrm{Av} 1+\mathrm{Bu}, \mathrm{y}=\mathrm{Cv} 1+\mathrm{Du}$.
c) Find the transfer function (matrix) $\mathrm{T}(\mathrm{s})=\mathrm{D}+\mathrm{C}(\mathrm{s}-\mathrm{A})^{-1} \mathrm{~B}$.

