File: G:/coursesF08/610/610F09Hmwk3.doc RWN 09/20/09
610 Fall 2009 - Homework z 3 Due Th 10/01/09

1. [60 points] [coupled coils and circuit solutions]
a) For the following circuit the top 2-port is a set of perfectly coupled coils with the impedance matrix description with $\mathrm{k}>0$.

$$
\mathrm{Z}_{\mathrm{cc}}(\mathrm{~s})=\mathrm{sL}\left[\begin{array}{lll}
1 & -\mathrm{k} ;-\mathrm{k} & \mathrm{k}^{2}
\end{array}\right]
$$

Show that these coupled coils have no admittance matrix. Find the impedance matrix, $\mathrm{Z}_{\mathrm{c}}(\mathrm{s})$, for the capacitor submatrix and add it to $\mathrm{Z}_{\mathrm{cc}}(\mathrm{s})$ to get the impedance matrix, $\mathrm{Z}(\mathrm{s})$, of the full 2-port. Find the admittance matrix, $\mathrm{Y}(\mathrm{s})$, for the full 2-port and interpret it as a parallel connection of two 2-ports each having an admittance matrix; comment on their nature.

b) Connect that 2-port with an ideal op-amp as per the following circuit. Set up circuit equations using a graph and admittances where possible and from your equations find $\mathrm{Vo}(\mathrm{s})$ given $\mathrm{I} 1(\mathrm{~s})$ and the circuit components.

2. [40 points] [2-port pi-equivalents \& power]
a) For the ideal 2-port OTA, having $\mathrm{Y}=\left[00 ; \mathrm{g}_{\mathrm{m}} 0\right]$, give the 2-port piequivalent circuit. Repeat for the OTA turned around, that is with $Y=\left[0 g_{m} ; 00\right]$.
b) The gyrator can be made of two such OTAs by adding their Y matrices. Draw this OTA equivalent for the gyrator and give its 2-port pi-equivalent circuit.
c) From this gyrator pi-equivalent calculate the power in each of its branches as well as their sum. Compare with the input power, $\mathrm{V}^{\mathrm{T}}{ }_{\text {port }} \mathrm{I}_{\text {port }}$ commenting on the result.

