File: f:/courses/fall2009/610/610F09finalexm.doc RWN 12/10/09

EE 610 Final Exam Fall 2009
Take Home. Open Book Open Notes 200 points total
Due in Room AVW 1364 at the final period Tu 12/15/09 [08-10am]
along with your notebook. Your signature certifies that the work is your own.

1. (6 points/synthesis $=30$ points) [lossless synthesis]

Synthesize $y(s)=\frac{s\left(s^{2}+6\right)}{s^{2}+3}$ by 5 methods $\left(1^{\text {st }} \& 2^{\text {nd }}\right.$ Foster \& Cauer \& via Richards,
function sections with $\mathrm{k}=1$)
2. (10 points/part=40 points) [even part zeros]

Assume that $\mathrm{k} 1 \& \mathrm{k} 2 \neq \pm \mathrm{k} 1$ are two zeros of the even part of a rational $\mathrm{y}(\mathrm{s})$. Note that if a Richards' section is extracted at k 1 then also -k 1 is also eliminated from the load admittance $\mathrm{yL}(\mathrm{s})$.
a) Since -k 1 is also a zero of the even part, a Richards' function extraction can occur by choosing $\mathrm{k}=-\mathrm{k} 1$ in the Richards' function extraction. Draw the (gyrator, capacitor) Richards' section that results.
b) Determine, in terms of the degree $\delta[y(s)]$, what is the minimum number of zeros of the even part of a rational $\mathrm{y}(\mathrm{s})$ that can be removed in a synthesis of a rational $y(s)$. In what cases is there no maximum of the number of zeros of this even part?
c) Show that Richards' functions can be used for synthesis of $y(s)$ which are not positive-real by synthesizing $y(s)=s\left(s^{2}+3\right)$ via three Richards' sections all using $\mathrm{k}=+1$.
3. (30 points) [RL circuits]

The necessary and sufficient conditions that a positive-real rational $y(s)$ by synthesizable by an LC circuit (with all L's \& C's positive) is that $y(s)=-\mathrm{y}(-\mathrm{s})$. Give (and prove) similar necessary and sufficient conditions that a positive-real rational $\mathrm{y}(\mathrm{s})$ be synthesizable by an LR circuit (with all L's \& R's positive).
4. (50 points) [nodal admittance]

The following represents the extraction of two Richards' sections at positive k's for a PR y(s). Find the nodal admittance matrix and eliminate node three to obtain the 2-port $\mathrm{Y}(\mathrm{s})$ matrix. By considering $\mathrm{Y}(\mathrm{s})$ as a sum of matrices discuss why it can be synthesized by a passive circuit using only one gyrator, one capacitor, one inductor and one resistor with possible transformer combinations..

5. (50 points) [semistate equations]

For the following circuit
a) choose branches $1,2,3$ for the tree and give the cut set and tie set matrices.
b) set up the semistate equations with $\mathrm{u}=[\mathrm{V} 1 \mathrm{~V} 2]^{\mathrm{T}}$ as input voltages, $\mathrm{y}=[-\mathrm{I} 1-\mathrm{I} 2]^{\mathrm{T}}$ as output currents [going up through the voltage sources], and tree voltages \& link currents for the semistate x .

