File: f:/coursesF09/303H/303hF09Hmwk5.doc RWN 10/9412/09b 303H Fall 2009 - Homework 5 Due Th 10/15/09

1. [60 points] [gain of a source follower]

For the source follower of the small frequal equivalent circuit of Figure 6.51 (a), p. 638 of Sedra/Smith, [with symbolic but real parameters]
a) Draw the full circuit diagram with the transistor symbol and biasing including an input coupling capacitor (note especially the bulk connection).
b) Using node equations find the 1×2 transfer function matrix, $\mathrm{T}(\mathrm{s})$, for the given equivalent circuit of the above mentioned figure. Here

$$
[\mathrm{Vo}]=\mathrm{T}(\mathrm{~s})\left[\begin{array}{l}
\mathrm{Vsig} \\
\mathrm{Vbs}
\end{array}\right]
$$

c) Explain why the entries of the transfer function matrix are at most degree 2 in the complex frequency, s , even though there are three capacitors present \{which normally means degree 3 \}.
d) That being the case, the numerators and denominators can be factored exactly. Give the zeros and poles and indicate their relative positions in the complex splane.
e) Sketch the \{magnitude of the \} frequency response of $\mathrm{Vo} / \mathrm{Vsig}(\mathrm{j} \omega)$ assuming $\mathrm{Vbs}=0$; repeat for $\mathrm{Vo} / \mathrm{Vbs}(\mathrm{j} \omega)$ assuming $\mathrm{Vsig}=0$ and compare.
2. [40 points] [cascade of inverters]

Use the 4007 s to make CMOS inverters which are biased at $\mathrm{VDD}=10 \mathrm{~V}$ and VSS $=0$.
a) Connect the inverters in cascade as shown in Figure 11.1 (b), page 1014 of Sedra/Smith, and run Spice to obtain the curves of Figure 11.1 (c) [this is a DC run]. Plot v_{X} and v_{Z} versus v_{W} as well as the straight line shown in that figure. Record the location of the points A, B and C and comment upon them with respect to VDD \{especially note B in relation to VDD/2\}.
b) Connect the inverters as shown in Figure 11.1 (a) and obtain Spice runs of the three voltages (now in time via transient response). Submit those as well as v_{X} and v_{Z} versus v_{w}. You will probably need to move off of an equilibrium point, which can be done by shocking the W lead with a short current source pulse.
c) Insert a capacitor, Cw , of 10 nFd from W to ground and repeat part b) above for various initial conditions on Cw , especially ones for the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

