File: f:/coursesF09/303H/303hF09Midtrm.doc RWN 11/04/09
303 Fall 2009 - Midterm Exam Th 11/05/09
Open book open notes but not open computers; 150 points total; if stuck go on to the next problem. Good luck

DATA: For DC characterization of NMOS transistors assume $\mathrm{KP}=2 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~W}=\mathrm{L}, \mathrm{VTO}=2 \mathrm{~V}$, LAMBDA=0

1. (50 points, 15 min$)$
a) For the following circuit find the admittance matrix $\mathrm{Y}(\mathrm{s})$ as a function of complex frequency s.

b) Give the admittances $\mathrm{yA}(\mathrm{s}), \mathrm{yB}(\mathrm{s}), \mathrm{yC}(\mathrm{s}), \mathrm{ym}(\mathrm{s})$ for the following circuit to be equivalent at the ports to the one of part a).

2. (50 points, 25 min$)$

For the following circuit when M2 is on use for iD2 [from the formula (7.19) p. 694]

$$
\mathrm{i}_{\mathrm{D} 2}=\mathrm{I}_{\mathrm{T}}\left[\frac{1}{2}-\left(\mathrm{a} \frac{\text { vid }}{2}\right) \sqrt{1-\left(\mathrm{a} \frac{\text { vid }}{2}\right)^{2}}\right] \text { where } \mathrm{a}=\sqrt{\frac{\mathrm{KP}}{\mathrm{I}_{\mathrm{T}}} * \frac{\mathrm{~W}}{\mathrm{~L}}}
$$

also

$$
\operatorname{Vov}=\frac{1}{\mathrm{a}}
$$

Choose Vdd $=10 \mathrm{~V}$, the tail current $\mathrm{I}_{\mathrm{T}}=8 \mathrm{~mA}$ and the load resistor to be $\mathrm{R}=\mathrm{Vdd} /\left(2 \mathrm{I}_{\mathrm{T}}\right)$.
a) evaluate numerically a and Vov of the above formulas and
b) Determine Vo (numerically) as a function of the input voltage vi and sketch for $-\mathrm{Vdd}<\mathrm{vi}<\mathrm{Vdd}$ indicating important points.

3. (50 points, 25 min$)$

Here Vdd $=10 \mathrm{~V}, \mathrm{R}=100 \mathrm{Ohm}, \mathrm{C}=20 \mathrm{nFd}$. The circuit has had vi=0 for $-\infty<\mathrm{t}<0$; vi changes at $t=0$ to $V d d / 2$ [that is $v i(t)=(V d d / 2) 1(t)$ with $1(t)$ the unit step]. Write $v d(t)$ for the voltage at the drain of the transistor.
a) Find $\operatorname{vd}(0+)[=\operatorname{vd}(0-)]$.
b) Find $v d(+\infty)$, that is when M is on but $\operatorname{dvd}(t) / d t=0$. From this show that M is in the saturation region for $0+<t<+\infty$.
c) Sketch the load line on two transistor [Id versus Vd] curves holding for $\mathrm{t}=0$ and for $\mathrm{t}=+\infty$; use just one graph.
d) Write the differential equation for $\operatorname{vd}(\mathrm{t})$ for $\mathrm{t}>0$, solve, and sketch the solution.

