1. For the following circuit the transfer function of interest is V2/Iin(s)
a. Draw the graph for the circuit with separate (terminal) branches for Iin and V2.
b. Draw the adjoint circuit and give the components which go into the terminal branches assuming that $\Delta \mathrm{V} 2$ is desired.
c. Give the formula for $\Delta \mathrm{V} 2 / \Delta \mathrm{R} 1$ in terms of voltages and currents in the network and its adjoint.
d. Analyze the two networks to evaluate $\Delta \mathrm{V} 2 / \Delta \mathrm{R} 1$ in terms of circuit elements and Iin.
e. Give the sensitivity $\mathrm{S}_{\mathrm{R} 1}^{\mathrm{V} 2 / \mathrm{Iin}}=\frac{\mathrm{R} 1}{\mathrm{~V} 2 / \mathrm{Iin}} \frac{\mathrm{d}(\mathrm{V} 2 / \mathrm{Iin})}{\mathrm{dR} 1}$

2. Repeat problem 1 above to find
a) $\mathrm{S}_{\mathrm{C}}^{\mathrm{V} 2 / \mathrm{Iin}}=\frac{\mathrm{C}}{\mathrm{V} 2 / \mathrm{Iin}} \frac{\mathrm{d}(\mathrm{V} 2 / \mathrm{Iin})}{\mathrm{dC}}$
b) $\mathrm{S}_{\mathrm{R} 1}^{\mathrm{V} 1 / \text { Iin }}=\frac{\mathrm{R} 1}{\mathrm{~V} 1 / \text { Iin }} \frac{\mathrm{d}(\mathrm{V} 1 / \text { Iin })}{\mathrm{dR} 1}$
c) $\mathrm{S}_{\mathrm{g}}^{\mathrm{V} 2 / \mathrm{Iin}}=\frac{\mathrm{g}}{\mathrm{V} 2 / \mathrm{Iin}} \frac{\mathrm{d}(\mathrm{V} 2 / \mathrm{Iin})}{\mathrm{dg}}$
