Pages 336 - 365 of Chapter 8 are devoted to positive real functions and their synthesis.

1. By analytically evaluating for all s in the RHP (= Right Half Plane; $\operatorname{Re}(s)=\sigma>0)$ show that the following are positive real
a) $\mathrm{Y}(\mathrm{s})=1 / \mathrm{Z}(\mathrm{s})$ whenever $\mathrm{Z}(\mathrm{s})$ is positive real
b) $Z(s)=\left(3 s^{2}+27\right) /\left(s^{3}+16 s\right)$
c) $Z(s)=\left(2 s^{2}+5 s+6\right) /(2 s+3)$
2. Synthesize the reactance functions:by the Cauer and Foster forms
a) $Z(s)=\left(3 s^{2}+27\right) /\left(s^{3}+16 s\right)$
b) $\mathrm{Y}(\mathrm{s})=\left(3 \mathrm{~s}^{2}+27\right) /\left(\mathrm{s}^{3}+16 \mathrm{~s}\right)$
c) $\mathrm{Z}(\mathrm{s})=\left(\left(\mathrm{s}^{2}+2\right)\left(\mathrm{s}^{2}+8\right)\right) /\left(\mathrm{s}\left(\mathrm{s}^{2}+4\right)\left(\mathrm{s}^{2}+9\right)\right)$
d) $\mathrm{Y}(\mathrm{s})=\left(\left(\mathrm{s}^{2}+2\right)\left(\mathrm{s}^{2}+8\right)\right) /\left(\mathrm{s}\left(\mathrm{s}^{2}+4\right)\left(\mathrm{s}^{2}+9\right)\right)$
3. Synthesize by using Richards function extractions with gyrator-C 2-ports:
a) The functions of problem 2 above.
b) $\mathrm{Y}(\mathrm{s})=\left(4 \mathrm{~s}^{2}+6 \mathrm{~s}+8\right) /\left(\mathrm{s}^{2}+2\right)$; compare with the circuit for it on p .364 found from the expansion $\mathrm{Y}(\mathrm{s})=4+(6 \mathrm{~s}) /\left(\mathrm{s}^{2}+2\right)$
4. Using the continued fraction synthesis on problem 2a) remove a part of the pole at $s^{2}=-16$ to obtain a non-canonical synthesis. If leads are attached at the end component in the synthesis determine the location of the zeros of transmission in the 2-port open circuit voltage transfer function.
