File: f:/coursesF08/303/303F08Midmkup.doc RWN 11/10/08
303 Fall 2008 - Midterm Exam Makeup - Take Home
Due in class Tuesday 11/18/08;
Open book open notes; all work your own which your signature guarantees
Maximum points:
a) 10 if greater than 65 was obtained on the midterm
b) 70 maximum for the total of midterm + midterm-makeup if less than 66 was obtained on the midterm

1. (up to 25 points) A given transistor circuit has the (normalized) transfer function

$$
[\mathrm{Vo}(\mathrm{~s}) / \mathrm{Vi}(\mathrm{~s})]=\mathrm{T}(\mathrm{~s})=5\left(\mathrm{~s}^{2}-4 \mathrm{~s}+3\right) /\left(\mathrm{s}^{2}+4 \mathrm{~s}+3\right)
$$

a) Give the zeroes and poles of $\mathrm{T}(\mathrm{s})$ and plot them in the s-plane
b) If, for $-\infty<t<+\infty$, vi(t$)=0.03 \mathrm{e}^{(\mathrm{j} 2 \mathrm{t})}$ give vo((t).
c) Using the result of $b)$ give $v o(t)$ when $v i(t)=0.03 \sin (2 t)$.
2. (up to 25 points) The following is an equivalent circuit for a source follower as a 2-port for which the 2×2 admittance matrix $\mathrm{Y}(\mathrm{s})$ is desired.
a) Find $\mathrm{Y}(\mathrm{s})$.
b) From Y(s) give the input resistance V1(s)/I1(s) under open circuit load conditions, that is, when $\mathrm{I} 2=0$. Repeat to find, also when $\mathrm{I} 2=0$, the transfer function $\mathrm{T}(\mathrm{s})=\mathrm{V} 2(\mathrm{~s}) / \mathrm{V} 1(\mathrm{~s})$.

