## ENEE 610

HW IV

## Solutions for problem $1 \& 2$ <br> Problem 3 solution is incomplete.

## Problem 1

Part a) and b) are trivial. Let me know if you need the graph.
(c) Reducing Semi-State equations to Stcady-State form

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{5} \\
\dot{x}_{6}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
c & 0 \\
0 & -1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & +1 \\
0 & 0 & x_{3} & 0 & 0 & +1 \\
-1 & -1 & 0 & -5 L_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 \\
-T & 1 & 1 & 0 & 0 & 0
\end{array}\right] \underline{x}
$$

$$
+\left[\begin{array}{ll}
4 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} 5 \\
i_{2} 5
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{cc}
c & 0 \\
0 & -L
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \underline{u}
$$

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & T \\
-T & -1 & -1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] u
$$

$$
\begin{aligned}
& \text { interchange columns } 586 \text { with } 384 \\
& \Rightarrow\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & T & 0 & 0 \\
-T & -1 & 0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \underline{u} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-1 & 0 \\
0 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
T & 0 \\
0 & -T \\
0 & 1
\end{array}\right] \underline{u}} \\
& {\left[\begin{array}{cc}
c_{3} & 0 \\
0 & -L_{4}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cc:cc:cc}
0 & 0 & 0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \underline{u}} \\
& \Rightarrow\left[\begin{array}{cc}
c_{3} & 0 \\
0 & -L_{4}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{5} \\
x_{0}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] 4 \\
& =\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
-1 & 0 \\
0 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
T & 0 \\
0 & -T \\
0 & 1
\end{array}\right] \underline{U}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & -1 \\
T-1 & 0
\end{array}\right] \underline{u} \\
& \text { Assume } C_{3} \& L_{4} \neq 0 \Rightarrow \\
& {\left[\begin{array}{cc}
c_{3} & 0 \\
0 & -L_{4}
\end{array}\right]^{-1}=\frac{1}{-L_{4} C_{3}}\left[\begin{array}{cc}
-L_{4} & 0 \\
0 & c_{3}
\end{array}\right]=\left[\begin{array}{cc}
1 / c_{3} & 0 \\
0 & -1 / L_{4}
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{l}
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cc}
1 / c_{3} & 0 \\
0 & -1 / L_{4}
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
1 / c_{3} & 0 \\
0 & -1 / L_{4}
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
F-1 & 0
\end{array}\right] \underline{u} \\
& \Rightarrow\left[\begin{array}{l}
x_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 / c_{3} \\
-1 / L_{4} & 0
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & -1 / c_{3} \\
-1 / L_{4}(T-1) & 0
\end{array}\right] \underline{u} \\
& \Rightarrow \begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array} \quad<\quad \text { statc-equatioins } \\
& y=v_{2} \Rightarrow v_{2}=v_{1}-v_{4} \\
& V_{4}=2_{4} 5 L_{4} ; i_{4}=x_{4} \\
& \Rightarrow y=\left[\begin{array}{ll}
0 & -s L_{4}
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
V_{1} s \\
i_{2} 5
\end{array}\right]
\end{aligned}
$$

d) from Lecture Notes we have

$$
T(S)=C(S I-A)^{-1} B+D
$$

where

$$
\begin{aligned}
D & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
C & =\left[\begin{array}{cc}
0 & -s L_{4}
\end{array}\right] \\
A & =\left[\begin{array}{cc}
0 & 1 / C_{3} \\
-1 / L_{4} & 0
\end{array}\right] \quad ; \quad B=\left[\begin{array}{cc}
0 & -1 / C_{3} \\
\frac{(-T+1)}{L_{4}} & 0
\end{array}\right] \\
\Rightarrow T & =\left[\frac{T^{2} C_{3} L_{4}+1(1-T)}{\left(s_{1}^{2} \cdot C_{3} \cdot L_{4}+1\right)}+1, \quad \frac{T_{2}}{s^{2} L_{3} L_{4}+1}\right]
\end{aligned}
$$

e) for $1^{\text {st }}$ entry poles are $\pm 1 / \sqrt{-L_{4} C_{3}}= \pm \frac{1}{j \sqrt{C_{3} L_{4}}}$ We have the sane poles for the second entry of $T(s)$ as well.

Since the poles ore not in the RHP $=1^{\text {st }}$ Condition is Satificied Also the poles are sample, which are the order of $\$$ or lower. For the $3^{\text {rd }}$ Condition we need $R e\{$ cachentry $\} \geqslant 0$ fuN $\leqslant \infty$ for $1^{\text {st }}$ entry.

$$
\text { Real }\left\{T_{1}\right\}=1 / 2\left\{T_{1}(s)+T_{1}^{*}(s)\right\}=1 / 2\left\{\frac{(\sigma+j \omega)^{2} C_{3} L_{4}+(1-T)}{\left.s^{2} C_{3}\left(L_{4}+1\right)\right) C}+2+\frac{(\sigma-j \omega)^{2} C_{3} L_{4}+(1-T)}{s^{2} C_{3}\left(L_{4}+1\right) C_{3}(1-T}\right.
$$

- No poles in RHP $\Rightarrow S \rightarrow j \omega)$

$$
\begin{aligned}
& =1 / 2\left\{\frac{-\omega^{2}\left(C_{3} L_{4}+(1-I)\right)\left(-\omega^{2}\right)+-\omega^{2} C_{3} L_{4}(1-T)(=\omega)^{2}+2\left(\omega^{2}\right) C_{3}\left(L_{4}+1\right)}{s^{2} C_{3}\left(L_{4}+1\right)}\right\} \\
& =1 / 2\left\{\frac{2 \omega^{2} c_{3}\left(L_{4}+1\right)}{s_{4} L_{4}+2 \omega^{4}(1-I)} s_{3}\left(L_{4}+1\right)\right.
\end{aligned}
$$

$\Rightarrow$ The numerator of the above is positur for $0 \leqslant \omega \leqslant \infty$
$\Rightarrow 1^{\text {st }}$ celery of $T(s)$ is Positive Reel
for $2^{\text {nd }}$ entry we have.

$$
\begin{aligned}
& \operatorname{Re}\left\{T_{2}(s)\right\}=1 / 2\left\{T_{2}(s)+T_{2}^{x}(s)\right\}=1 / 2\left\{\frac{-(\sigma+j \omega) L_{4}}{s^{2} C_{3}\left(L_{4}+1\right)}+\frac{-(\sigma-j \omega) L_{4}}{\left.s^{\pi^{2} C_{3}\left(L_{4}+1\right)}\right\}}\right. \\
& =1 / 2 \cdot \frac{L_{4}(\sigma+j \omega)(\sigma-j \omega)^{2}+(-\sigma+j \omega)(\sigma+j \omega)^{2} L_{4}}{s^{2} \cdot s^{* 2} C_{3}\left(L_{4}+1\right) L_{4}} \\
& =1 / 2 \frac{-\left(\sigma^{2}+j \omega\right)\left(\sigma^{2}-2 \sigma j \omega-\omega^{2}\right)+(-\sigma+j \omega)\left(\sigma^{2}+2 j \sigma \omega-\omega^{2}\right)}{S^{2} \cdot \delta^{*^{2}} C_{3}\left(L_{4}+1\right) L_{4}} \\
& =1 / 2\left(\frac{\left(\sigma^{3}+2 \sigma^{2} 3 \omega+5 \omega^{2}-j \omega^{2}-6 \omega^{2}+2 \sigma^{3}-\sigma^{3}-3 j \sigma^{2} \omega-5 \omega^{2}+j \omega \sigma^{2}-2 \sigma \omega^{2}-j \omega^{3}\right)\left(L_{4}{ }^{2}\right.}{s^{2}-s^{*^{2}} C_{3}\left(L_{4}+1\right) L_{4}},\right.
\end{aligned}
$$

$=1 / 2\left(\frac{\left(-2 \sigma^{3}-30 \omega^{2}\right) 44}{(1)}\right) \Rightarrow$ This is negative for all $0<\omega<\infty$
$\rightarrow$ Scone Term in T(s) is not neal Position

## Problem 2

$\bullet$
Problem 2)
$z(s)=s\left(s^{2}+5\right) /\left(s^{2}+3\right)$
$1^{s t}$ Footer Method: $Z(s)=\frac{s^{2}+5 s}{s^{2}+3}=s+\frac{2 s}{s^{2}+3}$
So we have $k_{\infty}=1,2 k_{2}=2, \omega_{2}^{2}=3$
$=0$

So for $2^{\text {nd }}$ Footer Method:
$Y(s)=\frac{1}{z(s)}=\frac{s^{2}+3}{s\left(s^{2}+5\right)}=\frac{.6}{s}+\frac{.4 s}{s^{2}+5}$


For Caver Method:
$1^{\text {st }}$ Caver Method:
we have $Z(s)=\frac{s\left(s^{2}+5\right)}{s^{2}+3}=s+\frac{2 s}{s^{2}+3}$

$$
\begin{aligned}
& \text { So } \frac{2 s}{s^{2}+3}=z_{1} \quad \& \frac{L_{1}=1}{} \\
& \Rightarrow \text { So, } Y_{1}(s)=\frac{1}{z_{1}}=\frac{s^{2}+3}{2 s}=1 / 2 s+\frac{3}{2 s} \Rightarrow C=1 / 2 \\
& \text { and } z_{2}=\frac{1}{y_{2}}=\frac{2 s}{3} \Rightarrow L_{2}=2 / 3 \\
& \Rightarrow Z_{1}(s) \quad L_{2}=2 / 3
\end{aligned}
$$

For $2^{\text {nd }}$ Caver Method:

$$
\begin{aligned}
& Z(s)=\frac{s\left(s^{2}+5\right)}{s^{2}+3} \Rightarrow Y(s)=\frac{s^{2}+3}{s^{3}+5 s} \\
& \Rightarrow Y(s)=\frac{3}{5 s}+\frac{(2 / s) s^{2}}{s^{3}+5 s} \Rightarrow L=3 / s \\
& S_{0} Z=\frac{s^{3}+5 s}{2 / s s^{2}}=\frac{25}{2 s}+\frac{s}{(2 / s)} \Rightarrow C=25 / 2 \\
& \quad \Rightarrow Y=\frac{2 / s}{s} \Rightarrow L_{2}=2 / s
\end{aligned}
$$



## Problem 3

Suggestion: I will start by writing the real part of the ratio as the ratio of the real-parts PLUS the ratio of the imaginary parts. Then decompose each term into its REAL and IMAG. I am not sure if this leads to the solution!

