ENEE 610

Homework Problems for Grading, Set 2 (100 points)
Due at class W 09/19/07
Indefinite Y and Incidence Matrix
These problems use the following circuit taken from Homework Set 1

1.(50 points)

a) Using the node numbers indicated set up the indefinite admittance matrix Yind(s).
b) Ground node 4 to get the nodal admittance matrix Ynode(s).
c) Eliminate node 3, with ground still at node 4, to get the 2-port admittance matrix Y(s).
2. (50 points)
a) For the circuit as drawn, give the oriented circuit graph [use the node numbering 1 through 4 as indicated and number the ground node 5]. Assume branches 1 through 4 connect nodes 1 through 4 to ground, branches $5 \& 6$ are for g1 (left for 5), branches $7 \& 8$ are for g2 (left for 7), and branches $9,10,11$ are for $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{R}$, respectively, with all orientation arrows pointing down or to the right.
b) Show that the graph can be made planar by a possible redrawing.
c) Give the augmented incidence matrix A_{a} for the graph just found.
d) The number of trees, n_{T}, of a graph is stated in problem 3.12 of Peikari to be given by

$$
\mathrm{n}_{\mathrm{T}}=\operatorname{det}\left(\mathrm{A}_{\mathrm{a}} \mathrm{~A}_{\mathrm{a}}{ }^{\mathrm{T}}\right)
$$

Find the number of trees for this graph.

