File: c:\temp\courses\fall2005\610\hmwrk4.doc RWN 10/05-06/05
ENEE 610
Homework Problems for Grading, Set 4 (100 points)
Due at class W 10/12/05 M 10/17/05 W 10/19/05
Passivity properties, solving chaotic ODE with Spice

1. (50 points)

For the following circuit assume that the g's and c's can assume any complex values and that as a 2-port the input port uses terminals I and VI while the output port uses terminals II and VI

a) Determine for which values of the g's and c's the 2-port admittance matrix $Y(s)$ satisfies $Y(s)=-Y(-s)^{T}$
b) Determine for which values of the g's and c's the 2port admittance matrix $\mathrm{Y}(\mathrm{s})$ is positive-real.
c) Determine for which values of the g's and c's the 2-port admittance matrix $\mathrm{Y}(\mathrm{s})$ is positive-real and lossless.
2. (50 points)

A certain circuit has w as a real parameter and is described by the equations

$$
\begin{aligned}
& \frac{d x}{d t}=A x+W v, \quad x(0)=[-0.2,-0.5,0,0]^{T} \\
& v=\tanh (x)
\end{aligned}
$$

where

$$
A=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -100
\end{array}\right], \mathrm{W}=\left[\begin{array}{cccc}
1 & 1 / 2 & -3 & -1 \\
0 & 2+\mathrm{w} & 3 & 0 \\
3 & -3 & 1 & 0 \\
100 & 0 & 0 & 170
\end{array}\right]
$$

a) Set up a PSpice schematic and plot x_{2} then x_{3} then x_{4} all versus $x_{1}\left(x_{1}\right.$ on the horizontal axis) all for $w=-0.4$; show that there is a limit cycle.
b) Repeat a) for $w=+0.3$ which supposedly gives chaos. Discuss the result.
c) Investigate the range of A_{44} over which the chaotic response of b) remains.

