File: c:\temp\courses\fall2005\610\hmwrk2.doc RWN 09/18/05 changed 09/22/05
ENEE 610
Homework Problems for Grading, Set 2 (100 points)
Due at class M 09/26/05-W 09/28/05
Van der Pol type equations and matrix functions

1.(50 points)

For the following Van der Pol type equation

$$
\frac{d^{2} y}{d t^{2}}+\varepsilon f(y) \frac{d y}{d t}+\omega_{o}^{2} y=0
$$

set up state variable equations for each of the following two cases using (note following changes) $x_{1}=y$ and $x_{2}=(d y / d t)+\varepsilon g(y)$ as state variables, with $\operatorname{dg}(y) / d y=f(y)$.
a) $f(y)=(\cosh (y))-2$
b) $g(y)=y-|y+1|+|y-1|$

In each case set up a PSpice circuit and simulate. For grading submit in each case [a) and b)] your equations, a sketch of $f(y)$ and $g(y)$, along with the PSpice schematics and a-two plots of x_{2} vs x_{1} (along with $g(y)$ on the same plot) for $\omega_{0}=1$ and the two values of $\varepsilon=100$ and $\varepsilon=0.001$.
2. (50) points
a) Find the range of values of the parameters a and b such that the following two matrices commute. (note $\mathrm{B}(3,3)$ changed to -2)

$$
\mathrm{A}=\left[\begin{array}{lll}
4 & \mathrm{a} & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}
-2 & 0 & \mathrm{~b} \\
0 & -2 & 2 \\
0 & 0 & -2
\end{array}\right]
$$

b) Choose $\mathrm{a}=1$ and the b for which A and B commute. Find the eigenvalues of A and B.
c) Under the assumption of b) use the eigenvalues to calculate $\exp (A)$ and $\exp (B)$.
d) Continue c) and calculate $[\exp (\mathrm{A})][\exp (\mathrm{B})]$ and compare with $\exp (\mathrm{A}+\mathrm{B})$.
e) Choose $a=1$ and $b=1$ [for which A and B should not commute] calculate $[\exp (A)][\exp (B)]$ and show this is not $\exp (A+B)$. For these values $(a=b=1)$ find C such that $[\exp (A)][\exp \{B)]=\exp (C)$.
Hint: find the eigenvalues of $\{[\exp (A)][\exp (B)\}\}$ and work with their \ln 's.

