ENE 610
Problem 2: $\quad Z(s)=\frac{s^{2}\left(s^{2}+b\right)}{(s+a)\left(s^{2}+c\right)} \quad$ losses positive real
a) All poles and zeros are simple and on the imaginary axis

10 poles and zeros alternate.:

$$
\left\{\begin{array}{l}
a=0 \\
0 \leq c \leq b \\
\text { for } c>0, b
\end{array}\right.
$$

$$
z(s)=\frac{s\left(s^{2}+b\right)}{\left(s^{2}+c\right)} \quad 3^{\prime} \quad b>c
$$

special case $c=0, b \neq 0$

$$
z(s)=\frac{s^{2}+b}{s}
$$

$$
c=0=b \quad z(s)=s
$$

is' b) for case $a=0, \quad 0<c<b$

$$
z(s)=\frac{s\left(s^{2}+b\right)}{s^{2}+c}
$$

dst Foster's
5^{\prime}

$$
\begin{array}{ll}
z(s)=k_{\infty} s+\frac{2 k_{2} s}{s^{2}+20_{2}{ }^{2}} & w_{2}^{2}=c \\
k_{\infty}=\left.\frac{z(s)}{s}\right|_{s \rightarrow \infty}=1 \\
2 k_{2}=\left.\frac{s^{2}+c}{s} \cdot z(s)\right|_{s^{2}=-c}=b-c
\end{array}
$$

s'2nd Foster's

$$
\begin{aligned}
& Y(s)=\frac{s^{2}+c}{s\left(s^{2}+b\right)}=k_{0}^{\prime} \frac{1}{s}+\frac{2 k_{2}^{\prime} s}{s^{2}+w_{2}^{2}} \quad w_{1}^{2}=b \\
& k_{0}^{\prime}=\left.Y(s) \cdot s\right|_{s=0}=\frac{c}{b} \\
& 2 k_{2}^{\prime}=\left.\frac{s^{2}+w_{2}^{2}}{s} \cdot Y(s)\right|_{s^{2}=-w_{2}^{\prime 2}=-b}=\frac{b-c}{b}
\end{aligned}
$$

Problem 2
b) (Continuous)
s^{1} Richard's function: $R(s)=\frac{k z(s)-s z z(k)}{k z(k)-s z(s)} \quad$ (PP. 361 from text book)

$$
R(s)=\left[\frac{s}{k}-\frac{z(s)}{z(k)}\right] /\left[\frac{s}{R} \cdot \frac{z(s)}{z(k)}-1\right]
$$

$$
\begin{equation*}
z_{2}=\frac{\frac{1}{g^{2}}-\operatorname{zin}(s)<s}{z \operatorname{in}(s)-s L}=\frac{1}{s^{2} \operatorname{zin}(k)} \cdot \frac{2 g^{2} \cdot \sin (s) \cdot s-1}{\frac{s 2}{\sin (k)}-\frac{\operatorname{zin}(s)}{\operatorname{zin}(k)}} \tag{3}
\end{equation*}
$$

$$
\text { Compare (2) }(3)\left\{\begin{array} { l }
{ k z (h) = 1 / L g ^ { 2 } } \\
{ k = \operatorname { z i n } (k) / L } \\
{ z _ { L } = \frac { 1 } { g ^ { 2 } \operatorname { z i n } (1) } \cdot \frac { 1 } { \operatorname { R i c h } (\operatorname { z i n } s) } }
\end{array} \Rightarrow \left\{\begin{array}{l}
L=\operatorname{zin}(k) / k \\
g= \pm 1 / \operatorname{zin}(h)
\end{array}\right.\right.
$$

to reduce the degree, find zero of the even part
$\operatorname{zin}(k)+\operatorname{zin}(-k)=0 \quad \operatorname{zin}(s)$ is odd function, any number works choose $A=1, \quad z \ln (s)=\frac{s\left(s^{2}+b\right)}{s^{2}+c} \quad z \ln (k)=\frac{b+1}{c+1}$

$$
\begin{aligned}
& k\left(\sin (s)-s \cdot \operatorname{zin}(k)=-\frac{1}{\left(s^{2}+c\right)(c+1)} \cdot(b-c) \cdot s\left(s^{2}-1\right)\right. \\
& k \operatorname{zin}(h)-s \operatorname{zin}(s)=-\frac{1}{\left(s^{2}+c\right)(c+1)}\left[(c+1) s^{2}+(b c+c)\right] \cdot\left(s^{2}-1\right) \\
& \therefore \operatorname{Rich}(\operatorname{zin}(\delta))=\frac{(b-c) s}{(c+1) s^{2}+(b c+C)} \\
& Z_{L}=\operatorname{Zin}(h) / \operatorname{Rich}\left(Z_{i n}(s)\right)=\frac{b+1}{c+1} \cdot \frac{(c+1) s^{2}+(b c+c)}{(b-c) s} \quad 1 \text { degree less than } Z \text { i } \\
& \therefore\left\{\begin{array}{l}
L=\frac{z i n(k)}{k}=\frac{b+1}{c+1} \\
g= \pm 1 / z i n(n)= \pm \frac{c+1}{b+1} \\
z_{L}=\frac{b+1}{c+1} \frac{(c+1)^{2}+(b c+c)}{(b-c) s}
\end{array}\right.
\end{aligned}
$$

EVEE 610
problems

$$
\begin{aligned}
& m \frac{d^{2}}{d t^{2}}=-b \frac{d x}{d t}-k\left(L_{0}-x\right)+\frac{q^{2}}{2 A \varepsilon} \\
& V=r \cdot i+V_{c}, \quad q=C V_{c}, \quad C=\frac{\varepsilon A}{L_{0}-x}, \quad i=\frac{d q}{d t}
\end{aligned}\left\{\begin{array}{l}
k=3.9 \times 10^{-9} \mathrm{~N} / \mathrm{m} \\
b=11 \times 10^{-15} \mathrm{~N}-5 / \mathrm{m} \\
A=(100 \mu \mathrm{M})^{2}=10^{-8} \mathrm{M}^{2}
\end{array}\right.
$$

a) Steady state $\frac{d x}{d t}=0, \frac{d^{2} x}{d T^{2}}=0$, also, $x=0$
10^{1}

$$
\begin{align*}
& \quad-k L_{0}+\frac{\bar{q}^{2}}{2 A \varepsilon}=0 \tag{1}\\
& i=\frac{d g}{d t}=0 \quad \therefore V=V_{C} \quad \bar{q}=C V_{c}=c V=\frac{\varepsilon A}{L_{0}} V \tag{2}
\end{align*}
$$

from (1) (2) solve $L_{0}=\sqrt[3]{\frac{\varepsilon A V^{2}}{2 K}}=3.57 \times 10^{-4} \mathrm{M}$

$$
\bar{q}=\frac{\varepsilon A V}{L_{0}}=4.96 \times 10^{-16} \mathrm{C}
$$

b) $x=[x, \dot{x}, q]^{\top}$ find state equection, $x_{1}=x, x_{2}=\dot{x}, x_{3}=q$.

25

$$
\begin{align*}
& \frac{d x}{d t}=\dot{x} \\
& m \frac{d^{2} x}{d t^{2}}=-b \dot{x}+k x+\frac{q^{2}}{2 A \varepsilon}-k L_{0} \tag{3}\\
& V=r \cdot i+V_{c}=r \cdot \frac{d q}{d t}+\frac{q\left(L_{0}-x\right)}{\varepsilon A} \\
\therefore & r \frac{d q}{d t}=-\frac{L_{0}}{\varepsilon A} q+\frac{q x}{\varepsilon A}+V \tag{b}
\end{align*}
$$

From (4), (5) and (6), with $u=v$

$$
\begin{aligned}
& \frac{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & m & 0 \\
0 & 0 & r
\end{array}\right] \frac{d}{d t}\left[\begin{array}{l}
x \\
\dot{x} \\
q
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
k & -b & 0 \\
0 & 0 & \frac{-k}{\varepsilon A}
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
q
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{q^{3}}{2 \varepsilon A}-k L_{0} \\
\frac{g x}{\varepsilon A}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] V}{\left[\begin{array}{l}
d \\
d t
\end{array}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{k}{m} & -\frac{b}{m} & 0 \\
0 & 0 & -\frac{L_{0}}{2 A r}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{x_{3}^{3}}{2 \varepsilon A m}-\frac{k_{2}}{m} \\
\frac{x_{1} x_{3}}{\varepsilon A r}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\frac{1}{r}
\end{array}\right] V\right.} \\
& m=19.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \cdot 10^{-8} \mathrm{M}^{2} \cdot 2 \times 10^{-6} \mathrm{M}=3.86 \times 10^{-10} \mathrm{~kg}
\end{aligned}
$$

c) $5!$
b) and c)

For Gf2, since $1 /\left(2^{*}\{\mathrm{epA}\}^{*}\{\mathrm{~m}\}\right)=1.46 \mathrm{e} 28$, every large number, Gf2 fail to converge in simulation.

10 Messages: 8 Error, 0 Warning, 2 Info
Severity Origin Time Message Text
INFO Schematics 04:11PM Creating PSPICE netlist...
INFO Schematics 04:11PM Netlist completed.
ERROR PSpiceAD 04:11PM Convergence problem in bias point calculation
ERROR PSpiceAD 04:11PM These devices failed to converge:
ERROR PSpiceAD 04:11PM G_Gf2
ERROR PSpiceAD 04:11PM Discontinuing simulation due to convergence problem
ERROR PSpiceAD 04:11PM Convergence problem in transient bias point calculation
ERROR PSpiceAD 04:11PM These devices failed to converge:
ERROR PSpiceAD 04:11PM G_Gf2
ERROR PSpiceAD 04:11PM Discontinuing simulation due to convergence problem

One surgestion of solving this problem is to normalize x 3 to Qdc.
As shown in part d) later, this system has pole at real positive axis. Therefore, it is not stable.

Problem 3 coutims)
at $D C$ operating point $\left\{\begin{array}{l}\bar{x}_{1}=\bar{x}=0 \\ \bar{x}_{2}=\dot{x}_{1}=0 \\ \bar{x}_{3}=\bar{q}=\frac{q A V k}{20}=4.96 \times 10^{-16}\end{array} \quad\left\{\begin{array}{l}x_{1}=\bar{x}_{1}+\hat{x}_{1} \quad \text { also } \\ x_{1}=\bar{x}_{2}+\hat{x}_{2} \quad \text { V }=v_{l}+i \\ x_{3}=\bar{x}_{3}+\hat{x}_{3}\end{array}\right.\right.$
equation (1) becomes:

$$
\frac{d}{d t}\left[\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2} \\
\hat{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{k}{m} & -\frac{b}{m} & 0 \\
0 & 0 & -L o / \varepsilon A r
\end{array}\right]\left[\begin{array}{c}
\hat{x}_{1} \\
\hat{x}_{2} \\
\bar{x}_{3}+\hat{x}_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{\left(\bar{x}_{3}+\hat{x}_{3}\right)^{2}}{2 q A m}-\frac{k L_{0}}{m} \\
\frac{\hat{x}_{1}\left(\bar{x}_{3}+\hat{x}_{3}\right)}{\varepsilon A r}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\frac{1}{r}
\end{array}\right]\left(v d_{i+\hat{v})} \begin{array}{l}
\sin \varphi \bar{x}_{1}=0 \\
\text { and } \bar{x}_{2}=0
\end{array}\right.
$$

only keep the first order term

$$
\left.f(x)=\left[\begin{array}{cc}
\left(\frac{\bar{x}_{3}^{2}}{2 \varepsilon A m}\right. & \frac{k_{L_{0}}}{m}
\end{array}\right)+\frac{\bar{x}_{3}}{\varepsilon A m} \hat{x}_{3}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\frac{x_{3}}{\varepsilon A r} & \hat{x}_{1}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1} \\
0 \\
\hat{x}_{3} \\
\frac{\bar{x}_{3}}{\varepsilon A m} \\
\hat{x}_{4} \\
\hat{x}_{3}
\end{array}\right]
$$

since $\bar{x}_{3}^{2}=\bar{q}^{2}=2 \varepsilon A \cdot k l_{0}$

$$
\therefore \frac{d}{d t}\left[\begin{array}{c}
\hat{x}_{1} \\
\hat{x}_{1} \\
\hat{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{b}{m} & -\frac{b}{m} & \frac{\bar{x}_{3}}{\varepsilon A m} \\
\frac{\bar{x}_{3}}{\varepsilon A r} & 0 & -\frac{L}{\varepsilon A r}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2} \\
\hat{x}_{1}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\left(\frac{-\bar{x}_{3} L_{0}}{\varepsilon \Delta p}+\frac{V_{d L}}{r}\right)+\frac{\hat{v}}{r}
\end{array}\right]
$$

since $\bar{x}_{5}=\bar{q}=\frac{\text { EAVdc }}{L_{0}}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
s & -1 & 0 \\
-\frac{k}{m} & s+\frac{b}{m} & -\frac{\bar{x}_{3}}{\varepsilon A m} \\
-\frac{x_{3}}{\varepsilon A r} & 0 & s+\frac{L_{0}}{\varepsilon A r}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1}(s) \\
\hat{x}_{2}(s) \\
\hat{x}_{3}(s)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\frac{\hat{v}(s)}{r}
\end{array}\right]} \\
& \hat{X}_{1}(S)=\varepsilon A \hat{V}(S) /\left\{S^{3} \varepsilon^{2} A^{2} m r+S^{2}\left(\varepsilon A m L_{0}+\varepsilon^{2} A^{2} b r\right)+S\left(\varepsilon A b L_{0}-k \varepsilon^{2} A^{2} r\right)\right. \\
& \left.-\left(q^{2}+k \varepsilon A L\right)\right\} \text { pole at } \\
& \therefore\left[\frac{\hat{x}(S)}{\hat{\pi} i c)}=\varepsilon A /\left\{s^{3} \varepsilon^{2} A m p+s^{2}\left(\varepsilon A m L_{0}+q^{2} A^{4} r\right)+S\left(\varepsilon A b_{0}-k \varepsilon A y\right)-q^{2}+k \varepsilon A C\right\}\right. \\
& \sigma>0 \text { plan }
\end{aligned}
$$

