File: c:\temp\courses\fall2004\610\610_finalF04.doc RWN 11/29/04
EE 610 Final - Fall2004
100 points, 120 minutes, work all problems; if stuck go on to next part

1. 30 points (30 minutes)

For the polynomial

$$
\mathrm{P}(\mathrm{~s})=\mathrm{s}^{6}+3 \mathrm{~s}^{5}+4 \mathrm{~s}^{4}+6 \mathrm{~s}^{3}+5 \mathrm{~s}^{2}+3 \mathrm{~s}+2
$$

a) $\operatorname{Form} \mathrm{z}(\mathrm{s})=\operatorname{EvP}(\mathrm{s}) / \operatorname{OdP}(\mathrm{s})$
b) Determine if $\mathrm{z}(\mathrm{s})$ is a reactance function (= positive-real \& lossless)
c) If $\mathrm{z}(\mathrm{s})$ is a reactance function give a First Cauer synthesis while if it is not give the reason why it is not.
d) Using $\mathrm{z}(\mathrm{s})$ determine if $\mathrm{P}(\mathrm{s})$ is a Hurwitz polynomial (no zeros in Res >0 and only simple ones on Res=0).
2. 35 points (30 minutes)

For the following 2-port

a) Find the 2-port admittance matrix $\mathrm{Y}(\mathrm{s})$ and give its determinant $\Delta(\mathrm{s})$
b) Find the load admittance $y_{\mathrm{L}}(\mathrm{s})$ in terms of $\Delta(\mathrm{s})$, the entries of $\mathrm{Y}(\mathrm{s})$, and the loaded input admittance $y_{\mathrm{I}}(\mathrm{s})$.
c) Determine necessary and sufficient conditions on a rational positive-real yI(s) such that $\mathrm{y}_{\mathrm{L}}(\mathrm{s})$ is positive-real and one degree lower than $\mathrm{y}_{\mathrm{I}}(\mathrm{s})$.
3. 35 points (30 minutes)

For one of the Colpitts oscillators presented in class the following is an equivalent circuit.

Here the voltages $\mathrm{v}_{\mathrm{g}}, \mathrm{v}_{\mathrm{d}}, \mathrm{v}_{\mathrm{sp}}=\mathrm{Vdd}, \mathrm{v}_{\mathrm{sn}}=-\mathrm{Vdd}$ (for gate, drain, source p and source_n) are measured with respect to ground. Using $\beta=\frac{\mathrm{KP}}{2} \frac{\mathrm{~W}}{\mathrm{~L}}$, assume the drain current source values are given by

$$
\begin{aligned}
& { }^{-i_{D p}}=\mathrm{i} 1=\beta\left(\mathrm{v}_{\mathrm{g}}-\mathrm{v}_{S p}-\mathrm{VTO}\right)^{2} \\
& { }^{i_{D n}}=\mathrm{i} 2=\beta\left(\mathrm{v}_{\mathrm{g}}-\mathrm{v}_{\mathrm{Sn}}-\mathrm{VTO}\right)^{2}
\end{aligned}
$$

a) Let i_{L} and $v_{L}=V_{g}-v_{d}$ be inductor current and voltage. Set up state variable equation using $x=\left[i_{L}, v_{g}, v_{L}\right]^{T}$ as the state variable.
b) Linearize the state variable equations and find the characteristic polynomial $\left[=\operatorname{det}\left(\mathrm{s} 1_{3}-\mathrm{A}\right)\right]$. From this find the natural frequencies.
c) Show that this circuit can be an oscillator and find the oscillation frequency in terms of the circuit parameters.

