File: c:\temp\courses\fall2003\610\problem2.doc RWN 09/15/03
ENEE 610
Problems for grading, Set 2
Due at class M 09/22/03
Some 2-Port Theory and Synthesis

1. (25 points)
a) For the following 2-ports find the admittance/impedance matrix for the one on the left /right by the addition of two admittance/impedance matrices. Check by using $\mathrm{Z}=\mathrm{Y}^{-1}$.

b) Show that there are values of $\mathrm{L} 1, \mathrm{C} 1$, and r 1 so that these two 2-ports have the same impedance matrix; give these values in terms of L, C and r.
2. (25 points).
a) For the 2-port on the right of problem 1, when loaded on its right port by the impedance z_{L} find the zeros of the even part of the input impedance z_{in} seen looking into the left port in terms of $\mathrm{L}, \mathrm{C}, \mathrm{r}$ and z_{L}. Relate these to the entries of the 2-port Z matrix.
b) Under the load conditions of part a) assume the circuit is fed by a voltage source on the left and the output is the voltage v 2 on the right. Draw the schematic and find the transfer function $\mathrm{v}_{2} / \mathrm{v}_{1}$; give its zeros ($=$ zeros of transmission).
3. (25 points)

Synthesize five different ways the driving point impedance

$$
z_{\text {in }}(s)=\frac{5 s\left(s^{2}+4\right)}{\left(s^{2}+2\right)\left(s^{2}+8\right)}
$$

