File: c:\temp\courses\fall2003\610\final_exam_610F03.doc RWN 12/15/03
ENEE 610 Fall 2003 Final exam
2 hours ($=120$ minutes), 120 points total, open book, open notes. If stuck on a problem, go on to the next. Show your work for partial credit. Good luck!

For the following use the gyrator polarity as

1. (40points, 30 minutes) [PR and synthesis]

Consider the rational driving point admittance where n and d are finite real parameters:
$y(s)=\frac{\mathrm{ns}^{2}+3 \mathrm{~s}+1}{\mathrm{ds}+1}$
a) Give the set of n and d such that this $\mathrm{y}(\mathrm{s})$ is positive real.
b) Give the set of n and d such that this $y(s)$ is lossless.
c) Give a synthesis for all $y(s)$ that are positive real.
d) Give a synthesis for all $\mathrm{y}(\mathrm{s})$ including those which are not positive real.
2. (40points, 40 minutes) [graph, admittance matrices, transfer function]

For the following bridge circuit and the corresponding given graph (the nodes are numbered by Roman numerals and the branches by Arabic integers) [choose branches 1, 2, 3 as the tree]

a) Give the cut-set matrix.
b) Give the tie-set matrix.
c) Give the indefinite admittance matrix, Yind, for the circuit to the right of Vin.
d) Give the resulting 3-terminal Y matrix when node $I V=0=$ gnd.
e) Assuming $\mathrm{C} 2=\mathrm{C} 5=\mathrm{C}>0$ find the transfer function Vo / V in where $\mathrm{Vo}=\mathrm{vIII}-\mathrm{vII}$ (with vIV=vgnd $=0$).
f) Assuming that g can vary find those g and s for which the bridge is balanced, that is $\mathrm{Vo}=0=\mathrm{i} 3$, and from that state a use for the circuit.
3. (40points, 40 minutes) [from papers presented] Choose one of the following two (I or II) I. [nonlinear state variables]

For the Colpitts Oscillator chaos generator of M. P. Kennedy, in the paper presented by A. Jaleel, replace the BJT by an NMOS transistor and add an input vin $=u$ as shown below.

Assume that there is some nonlinear function $f(.,$.$) such that the transistor is described by$

$$
\begin{aligned}
& \mathrm{iG}=\mathrm{iB}=0 \\
& \mathrm{iD}=\mathrm{f}(\mathrm{vGS}, \mathrm{vDS})
\end{aligned}
$$

a) Using the drain voltage (with respect to ground) as the output, $\mathrm{y}=\mathrm{v} 1+\mathrm{v} 2$, set up the state variable equations in the form

$$
\begin{aligned}
& \frac{d x}{d t}=A x+F(x, u)+B u, \quad x=\left[\begin{array}{c}
i L \\
v 1 \\
v 2
\end{array}\right], u=v i n \\
& y=C x
\end{aligned}
$$

b) Under the assumptions that the nonlinear transistor is replaced by a linear voltage controlled current source with $\mathrm{iG}=0, \mathrm{iD}=\mathrm{g}_{\mathrm{m}} \mathrm{vGS}$ and that vin=$=0$, can the resulting circuit exhibit chaos?
II. [synthesis with op-amps]
a) For the following circuit on the left, find the mixed matrix A_{1} for $\left[\begin{array}{l}V_{1} \\ V_{3}\end{array}\right]=A_{1} \cdot\left[\begin{array}{l}V_{2} \\ V_{4}\end{array}\right]$. The op-amp has

(a)

(b)
b) For the network (b) on the right of the above, if $\left[\begin{array}{c}V_{1} \\ i_{1}\end{array}\right]=A_{1} \cdot\left[\begin{array}{c}V_{2} \\ i_{2}\end{array}\right]$ with the matrix A_{1} found in a), give an RL synthesis and give the value of each element in terms of the circuit elements in (a). V_{1}, i_{1}, V_{2}, and i_{2}, have the signs and directions as shown in the right circuit above.
c) For the following circuit find the mixed matrix $A_{2}\left[\begin{array}{l}V_{1} \\ V_{3}\end{array}\right]=A_{2} \cdot\left[\begin{array}{l}V_{2} \\ V_{4}\end{array}\right]$.

(c)

(d)
d) For the network in (d) of the last figure, if $\left[\begin{array}{l}V_{1} \\ i_{1}\end{array}\right]=A_{2} \cdot\left[\begin{array}{l}V_{2} \\ i_{2}\end{array}\right]$ with the matrix A_{2} found in c), give an

RC synthesis and the value of each element in terms of the circuit elements in (c).
e) For the following circuit, find the transfer function $T(s)=\frac{V_{o}}{V_{i n}}$.

