ENEE610_09/08/03 with corrections and revisions of

$$
Z=\left[\begin{array}{ll}
\frac{1}{c_{1}} & \frac{1}{c_{1}}+r \\
\frac{1}{c_{A}}-r & \frac{1}{c_{s}}
\end{array}\right]=\left[\begin{array}{ll}
k z(k) / k & \frac{k z(k)}{\alpha}+z(k) \\
\frac{k z(k)}{s}-z(k) & \frac{k z(k)}{A}
\end{array}\right]^{p .1}
$$

at $A=k \Rightarrow z_{21}(k)=0 \Rightarrow$ zero of transmission
have $R(\alpha)=\frac{k z(\alpha)-\alpha z(k)}{k z(k)-k z(\alpha)}$

$$
\text { if } z(k)=-z(-k) \Rightarrow
$$

(a) $\alpha=-k$ aldo get a cancellation
if $z(k)+\xi(-k)=0 \Rightarrow$ if a is a zero of the even rom t of $z(a)$

$$
\begin{gathered}
\text { By def: } \varepsilon_{r} z(\alpha)=\frac{1}{2}(z(\alpha)+z(-\alpha)) \quad \text { ie } \varepsilon(z(\alpha))=E(z(\alpha)) \\
\theta d z(\alpha)=\frac{1}{2}(z(\alpha)-z(-\alpha))
\end{gathered}
$$

$$
z(a)=e_{0} z+o d z
$$

$$
\begin{aligned}
& \text { عᄃ } 6100_{\text {P. } 2}^{09 / 08 / 03} \\
& R(-k)=\frac{k z(-k)-(-k) z(k)}{k z(k)-(-k) z(-k)}=\frac{-k z(k)+k z(k)}{k z(k)-k z(k)} \\
& \therefore \quad \alpha=-k \text { will alarcancel } \\
& 3(k)=-3(-k)
\end{aligned}
$$

$$
\varepsilon \& 610,09 / 08 / 03
$$

$$
p .3
$$

$$
\begin{aligned}
& \text { Ef: } z(\alpha)=\frac{3 \alpha+1}{\alpha+2} \quad \text { ect } k=2 ; z(k)=7 / 4 \\
& \begin{aligned}
z_{L} & =\operatorname{R} \cdot R(\alpha)=z(k) \cdot \frac{k z(\alpha)-A z(a)}{k z(k)-\alpha z(\alpha)}=\left(\frac{1}{4}\right)\left(\frac{2\left(\frac{3 \alpha+1}{2+2}\right)-\alpha 7 / 4}{\frac{7}{2}-\frac{\theta(3 \alpha+1)}{\alpha+2}}\right) \\
& =7\left(6 \alpha+2-\frac{7}{4} z^{2}-\frac{7}{2}\right)
\end{aligned} \\
& =\frac{7}{4}\binom{6 \alpha+2-\frac{7}{4} \alpha^{2}-\frac{7}{2} \alpha}{\frac{7 \alpha+7-3 \alpha^{2}-\alpha}{2}}=\frac{7}{8}\left(\frac{-7 \alpha^{2}+10 \alpha+8}{-6 \alpha^{2}+5 \alpha+14}\right) \\
& \frac{\alpha-2 \sqrt{-7 a-4}}{\frac{-7 \alpha^{2}+10 \alpha+8}{-72^{2}+14 \alpha}} . \quad=\frac{7}{8}\left(\frac{\alpha-2)(-7 \alpha-4)}{(\alpha-2)(-6 a-7)}\right.
\end{aligned}
$$

look for a better k : desire $k=$ zero of $E(z)$

$$
\begin{aligned}
& 2 \varepsilon q(\alpha)=\xi(\alpha)+z(-\alpha)=\frac{3 A+1}{\alpha+2}+\frac{-3 \alpha+1}{-\alpha+2} \\
& \Rightarrow \frac{x}{3} \varepsilon \sim z(a)=\frac{(A+1 / 3)(-\alpha+2)+(-\alpha+1 / 3)(1+2)}{(R+2)(-\alpha+2)}=\frac{-2 A^{2}+4 / 3}{D(A) D(-A)} \\
& \Rightarrow-A^{2}+2 / 3 \Rightarrow \theta^{2}-2 / 3=0 \\
& \theta_{\text {er }}= \pm \sqrt{2 / 3} \nRightarrow k=\sqrt{2 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\varepsilon \varepsilon 610,09 / 08 / 03 \\
p .5
\end{array} \\
& \mathcal{Z}(2)=\frac{3 k+1}{\alpha+2} ; \quad k=\sqrt{2 / 3} ; \mathcal{j}(k)=\frac{\sqrt{6}+1}{2+\sqrt{2 / 3}}=\sqrt{\frac{3}{2}} \\
& R=\frac{\sqrt{3 / 3} \cdot \frac{3 \alpha+1}{\alpha+2}-A \sqrt{3 / 2}}{\sqrt{2 / 3} \cdot \sqrt{3 / 2}-A(3 R+1)}=\text { constant as }(\alpha-\sqrt{2 / 3})(\alpha+\sqrt{2 / 3}) \\
& \sqrt{2 / 3} \cdot \sqrt{3 / 2}-A\left(\frac{3 R+1}{Q+2}\right) \text { will cancel }=Q^{2}-2 / 3 \\
& =\frac{-\sqrt{3 / 2}\left(Q^{2}-2 / 3\right)}{-3\left(R^{2}-2 / 3\right)}=\frac{1}{\sqrt{6}} \\
& \left.z=\frac{3 Q+1}{A+i} \rightarrow \frac{1}{T c}=\frac{1}{k z(k)}=1\right\} R_{\operatorname{load}}^{r}=r R=\frac{1}{2}
\end{aligned}
$$

$$
\begin{gathered}
\varepsilon \varepsilon 610,09 / 08 / 03 \\
p-6
\end{gathered}
$$

Lossless cúrcuito - p. 342 (LC= reaitance)

$$
\begin{aligned}
& \left.P_{\text {ave }}(\omega)\right|_{\alpha=j \omega}=0 \Rightarrow P_{\text {ave }}=\text { arerage joover } \\
& =\operatorname{Re}^{T^{*}} I=\frac{V^{\Gamma *} I+I^{\Gamma *} V}{2}
\end{aligned}
$$

assume $Z\left(c_{j} \omega\right)$ epiat; $V=Z I$

$$
\begin{aligned}
2 P_{\text {ave }}(\omega) & \left.=I^{T *} Z^{T *}\left(_{j} \omega\right) I+I^{T *} Z C_{j} \omega\right) T \\
& =I^{T *}\left[Z^{T *}\left({ }_{j} \omega\right)+Z C_{j} \omega\right]^{1} I \\
\text { loaslers } & \Rightarrow Z\left(C_{j}^{c} \omega\right)+Z^{T *}(j \omega)=0_{\text {man }} \text { ijvzI are }
\end{aligned}
$$

