file: 610_F02_probs6.doc RWN 10/16/02b
ENEE 610 Fall 2002
Problems to consider \#6

1. Consider a rational driving-point admittance y(s) which has real coefficients.
a) If y(s) comes from a passive RL circuit show that its poles and zeros are on the non-positive real axis and alternate. Since the poles and zeros for an RC circuit have the same property, what is it that distinguishes $y(s)$ to be RL rather than RC?
b) Give necessary and sufficient conditions that $y(s)$ is the driving-point admittance of a passive RL circuit. Repeat in the case that $y(s)$ is for an $R C$ circuit.
2. Using the Richards' function to obtain a cascade, correct errors, if any, and then complete the synthesis started in class of

$$
y(s)=\frac{s\left(s^{2}+3\right)}{3\left(s^{2}+\frac{1}{3}\right)}
$$

3. For the following function plot the poles and zeros and the zeros of the even part and of the odd part. Show that this is the driving point admittance of a two element kind circuit (that is, one of LC, RL, or RC).

$$
y(s)=\frac{s(s+3)}{3\left(s+\frac{1}{3}\right)}
$$

Synthesize using the Richards' function this driving point admittance.

Give a synthesis using the $1^{\text {st }}$ and $2^{\text {nd }}$ Cauer and the $1^{\text {st }}$ an $2^{\text {nd }}$ Foster forms and compare these and with the result of the Richards' function synthesis.
4. Find all values of the triple of complex numbers a, b and c such that

$$
y(s)=\frac{(s+a)(s+c)}{3(s+b)}
$$

is the driving-point admittance of a passive circuit.
For those values find the zeros of the even part and use a Richards' function to give a synthesis.
5. For the following circuit find the sensitivity of Vo/V1 to Gm, to C, and to R. Do this in two ways, by direct calculation and by the use of the adjoint circuit.

6. Given a circuit with a graph G show how to draw the graph for the adjoint. Carry out your construction on the circuit of 5 . above.
7. Find the adjoint circuit for an ideal current mirror and then for a transistor realization as a simple current mirror acting linearly. Repeat for the differential pair acting linearly and for the op-amp.
8. If the circuit is nonlinear discuss how you would define the adjoint circuit. Consider your definition in the case of the differential pair.
9. Discuss the uniqueness or non-uniqueness of the adjoint circuit (for this also consider the nullator, the norator, the op-amp, the transformer, and the circulator).

